

NUMBERSYSTEMS

2.1Introduction

 There are several kinds of data such as, numeric, text, date, graphics, image, audio and video

that need to be processed by a computer. The text data usually consist of standard

alphabetic, numeric, and special characters.

 The graphics data consist of still pictures such as drawings and photographs. Any type of

sound, including music and voice, is considered as audio data. Video data

consistofmotionpictures.

 Thedatahastobeconvertedintoa format that the computer understands. Data can be classified

into two forms, analog data and digital data. Analog data can have any value within a defined

range and it is continuous.

 Sound waves, telephone signals, temperatures and all other signals that are not broken into

bits are examples of analog data. Digital data can be

representedbyaseriesofbinarynumbersanditisdiscrete.

The Arithmetic and Logic Unit (ALU) of the computer performs arithmetic and logical operations on

data.

Computer arithmetic is commonlyperformedontwodifferenttypesofnumbers,integerand

floatingpoint.Asthehardwarerequiredforarithmeticismuchsimpler

forintegersthanfloatingpointnumbers,thesetwotypeshaveentirely differentrepresentations.

Anintegerisawholenumberandthe floating-point number has a fractional part. To understand about

howcomputersstoredatainthememoryandhowtheyhandlethem,

onemustknowaboutbitsandbytesandthenumbersystems.

Bits and bytes are common computer jargons. Both the main memory (Random Access Memory or

RAM) and the hard disk capacitiesaremeasuredintermsofbytes.

Theharddiskand memory capacity of a computer and other specifications are described in terms

of bits and bytes. For instance, a computer may bedescribedashavinga32-

bitPentiumprocessorwith128MegabytesofRAMandharddiskcapacityof40Gigabytes.

BitsandBytes

A numbering system is a way of representing numbers. The most commonly used numbering system

is the decimal system. Computer systems can perform computations and transmit data thousands of times

faster in binary form than they can use decimal representations.Itisimportantforeveryonestudyingcomputersto

knowhowthebinarysystemandhexadecimalsystemwork.

A bit is small piece of data that is derived from the words

―binarydigit”.Bitshaveonlytwopossiblevalues,0and1.Abinary

numbercontainsasequenceof0sand1slike10111.Acollectionof

8bitsiscalledasabyte.With8bitsinabyte,wecanrepresent256 valuesrangingfrom0to255asshownbelow:

0 = 0000 0000

1 = 0000 0001

2 = 0000 0010

3 = 0000 0011

………….

………….

………….

10

10

254 = 11111110

255 = 11111111

Bytes are used to represent characters in a text. Different types of coding schemes are used to

represent the character set and numbers. The most commonly used coding scheme is the

AmericanStandardCodeforInformationInterchange(ASCII).Each binary value between 0 and 127 is used to

represent a specific character.TheASCIIvalueforablankcharacter(blankspace)is32 and the ASCII value of

numeric 0 is 48. The range of ASCII values for lower case alphabets is from 97 to 122 and the range of

ASCII valuesfortheuppercasealphabetsis65to90.

ComputermemoryisnormallyrepresentedintermsofKilobytes orMegabytes.

Inmetricsystem,oneKilorepresents1000,thatis,

103. Inbinarysystem,oneKilobyterepresents1024bytes,thatis,

210.Thefollowingtableshowstherepresentationofvariousmemory sizes.

Name

Abbreviation

Size(Bytes)

Kilo

Mega

Giga

TeraP

etaEx

aZetta

Yotta

K

M

G

T

P

E

Z

Y

2^10*

2^20

2^30

2^40

2^50

2^60

2^70

2^80

*Read as2 power10.

Ina2GB(Gigabytes)storagedevice(harddisk),totally

21,47,483,648bytes can be stored. Nowadays, databases having sizeinTerabytesarereported;Zettaand

Yottasizedatabasesare yettocome.

2.3DecimalNumberSystem

Inourdailylife,weuseasystembasedondigitstorepresent

numbers.Thesystemthatusesthedecimalnumbersordigitsymbols0 to 9 is called as the decimal number system.

This system is said tohaveabase,orradix,often.Sequenceofdigitsymbolsareused to represent numbers greater

than 9. When a number is written as a sequence of decimal digits, its value can be interpreted using the

positionalvalueofeachdigitinthenumber. Thepositionalnumber system is a system of writing numbers where

the value of a digit depends not only on the digit, but also on its placement within a number.

Inthepositionalnumbersystem,eachdecimaldigitis weighted relative to its position in the number. This means

that eachdigitinthenumberismultipliedbytenraisedtoapower

correspondingto that digit’s position.Thus the value of the decimal sequence948is:

94810 = 9X 102+4X 101+ 8 X 100

Fractional values are represented in the same manner, but

theexponentsarenegativefordigitsontherightsideofthedecimal point.

Thusthevalueofthefractionaldecimalsequence948.23is:

948.23 =9X102+4X101+8X100+2X10-1+3X10-2

i

2

i

2

10

2

2

Ingeneral,forthedecimalrepresentationof

X = {.…xxx.x xx….}, 2 1 0 -1 -2 -3

thevalueofXis

X=S x10i where i=….2,1,0,-1,-2,….

2.4 BinaryNumberSystem

Ten different digits 0 – 9 are used to represent numbers in the decimal system. There are only

two digits in the binary system, namely,0and1.Thenumbersinthebinarysystemarerepresented to the

base two and the positional multipliers are the powers of two.

Theleftmostbitinthebinarynumberiscalledasthemostsignificant bit (MSB) and it has the largest

positional weight. The rightmost bit

istheleastsignificantbit(LSB)andhasthesmallestpositionalweight.

Thebinarysequence101112 hasthedecimalequivalent:

10111

= 1 X 24 +0X23+ 1 X 22+1X21+ 1 X 20

= 16 + 0 + 4 + 2 + 1

=2310

Thedecimalequivalentofthefractionalbinarysequencecanbe

estimatedinthesamemanner.Theexponentsarenegativepowersof

twofordigitsontherightsideofthebinarypoint.Thebinaryequivalent

ofthedecimalpointisthebinarypoint.Thusthedecimalvalueofthe

fractionalbinarysequence0.1011 is:

0.1011 =1X2-1+ 0 X 2-2+1X2-3 + 1 X 2-4
= 0.5 + 0 + 0.125 + 0.0625
= 0.6875

10

2.5HexadecimalNumberSystem

Hexadecimal representation of numbers is more efficient in

digitalapplicationsbecauseitoccupieslessmemoryspaceforstoring largenumbers.

Ahexadecimalnumberisrepresentedusingbase

16. Hexadecimal or Hex numbers are used asa shorthand form of binary sequence.

This system is used to represent data in a more compact manner. In the hexadecimal

number system, the binary

digitsaregroupedintosetsof4andeachpossiblecombinationof4

binarydigitsisgivenasymbolasfollows:

0000=0 1000=8
0001=1 1001=9
0010=2 1010=A
0011=3 1011=B
0100=4 1100=C
0101=5 1101=D
0110=6 1110=E
0111=7 1111=F

10

16

2C
16

1
r

1

2

1 2
r

2

2 1

2

2

16

1, 1

1 1

2

2 2

2 1

2 3

3

Since 16 symbols are used, 0 to F, the notation is called

hexadecimal.Thefirst ten symbols are the same as in the decimal system, 0 to 9 and

the remaining six symbols are taken from the

firstsixlettersofthealphabetsequence,AtoF. Thehexadecimal

sequence2C hasthedecimalequivalent:

= 2 X 161+ C X 160

= 32 + 12

=44

The hexadecimal representation is more compact than binary representation. It is very

easy to convert between binary and hexadecimal systems. Each hexadecimal digit will

correspond to fourbinarydigitsbecause24 =16.Thehexadecimalequivalentof

thebinarysequence110010011101 is:

1100 1001 1101 =C9D C 9 D

2.6 DecimaltoBinaryConversion

To convert a binary number to a decimal number, it is required to multiply

each binary digit by the appropriate power of 2 and add theresults.

Therearetwoapproachesforconvertingadecimal numberintobinaryformat.

2.6.1RepeatedDivisionby2

Any decimal number divided by 2 will leave a remainder of 0 or 1. Repeated

division by 2 will leave a string of 0s and 1s that become the binary equivalent of the

decimal number. Suppose it is required to convert the decimal number M into binary

form, dividing Mby2inthedecimalsystem,wewillobtainaquotientM1 anda

remainderr wherer canhaveavalueofeither0or1.

ie.,M = 2 * M +r =0 or1

NextdividethequotientM by2. ThenewquotientwillbeM and

thenewremainderr.

ie.,M =2*M +r =0 or1

sothat M = 2 (2 * M + r) + r

= 22M +r * 21+r*20

NextdividethequotientM by2. ThenewquotientwillbeM and

thenewremainderr.

2

3 1

1

2

1

3 3

3 2

3 3 2

k 3

i.e., M =2*M +r

sothat M = 2 (2 * (2 * M +r)+r) + r 3 3 2 1
= 22(2*M +r)+r * 21+r*20

= 23M +r *22+r * 21+r* 20

Theaboveprocessisrepeateduntilthequotientbecomes0, then

M=1*2k+r *2k-1+….+r *22+r *21+r*20

Example:

Convert2310

intoitsequivalentbinary

number.

2
23

10

 Quotient Remainder

23/2 11 1 (LSB)

11/2 5 1

5/2 2 1

2/2 1 0

1/2 0 1 (MSB)

Towritethebinaryequivalentofthedecimalnumber,readthe

remaindersfromthebottomupwardas:

2310 =10111

The number of bits in the binary number is the exponent of the

smallestpowerof2thatislargerthanthedecimalnumber.Consider

adecimalnumber23.Findtheexponentofthesmallestpowerof2 thatislargerthan23.

16 <23 <32

24< 23<25

Hence, the number 23 has 5 bits as 10111. Consider another example.

36

10

10 10

Findthenumberofbitsinthebinaryrepresentationofthedecimal

number36withoutactuallyconvertingintoitsbinaryequivalent.

Thenextimmediatelargenumberthan36thatcanbe representedinpowersof2is64.

32 <36 <64

25< 36<26

Hence,thenumber36shouldhave6bitsinitsbinary representation.

2.6.2SumofPowersof2

Adecimalnumbercanbeconvertedintoabinarynumberby

addingupthepowersof2andthenaddingbitsasneededtoobtain

thetotalvalueofthenumber.Forexample,toconvert36 tobinary:

a.Findthelargestpowerof2thatissmallerthanorequalto36

> 32

b. Setthe32’sbitto1andsubtract32fromtheoriginalnumber.

36 – 32 = 4

c.16isgreaterthantheremainingtotal.Therefore,setthe16’sbit to0

d. 8isgreaterthantheremainingtotal.Hence,setthe8’sbitto0

e.Astheremainingvalueisitselfinpowersof2,set4’sbitto1

andsubtract4

4–4=0

Conversioniscompletewhenthereisnothinglefttosubtract.

Anyremainingbitsshouldbesetto0. Hence

36 = 100100
2

2

10

2 10

10

Theconversionstepscanbegivenasfollows:

32 16 8 4 2 1

1 36–32=4

32 16 8 4 2 1

1 0 0 1 4 – 4 =0

32 16 8 4 2 1

Example:

1 0 01 0 0 36 =100100

Convert91 tobinaryusingthesumofpowersof2method.

Thelargestpowerof2thatissmallerthanorequalto91is64.

64 3216 8 4 2 1

1 91-64 = 27 64 3216 8 4 2 1

1 0 191-(64+16)=11

(Since32>27,setthe32’sbit0and16<27.setthe16’sbit1)

64 3216 8 4 2 1

1 0 1 191-(64+16+8) = 3

64 3216 8 4 2 1

1 0 1 10 1 91-(64+16+8+2) = 1

64 3216 8 4 2 1

1 0 1 10 1 1 91-(64+16+8+2+1) = 0

Hence 91 = 1011011

10 2

10
2

10
2

10

2.7 Conversionoffractionaldecimaltobinary

Thedecimalfractionslike1/2,1/4,1/8etc.,canbeconvertedinto

exactbinaryfractions.Sumofpowersmethodcanbeappliedtothese fractions.

0.5 =1*2-1= 0.1

0.25 = 0 * 2-1 +1*2-2 =0.01

0.125 = 0 * 2-1+ 0 * 2-2 +1*2-3= 0.001

Thefraction5/8=4/8+1/8=1/2+1/8hasthebinaryequivalent:

5/8 = 1 * 2-1+0*2-2+ 1 * 2-3

= 0.101
2

Exactconversionisnotpossibleforthedecimalfractionsthat

cannotberepresentedinpowersof2.Forexample,0.2 cannotbe

exactlyrepresentedbyasumofnegativepowersof2.Amethodof repeated multiplication

by 2 has to be used to convert such kind of decimalfractions.

Thestepsinvolvedinthemethodofrepeatedmultiplicationby2:

· Multiply the decimal fraction by 2 and note the integer part.

Theintegerpartiseither0or1.

· Discard the integer part of the previous product. Multiply the fractional part of

the previous product by 2. Repeat the first step untilthefractionrepeatsorterminates.

Theresultingintegerpartformsastringof0sand1sthat

becomethebinaryequivalentofthedecimalfraction.

2 10

Example:

Integerpart

0.2*2=0.4 0

0.4*2=0.8 0

0.8*2=1.6 1

0.6*2=1.2 1

0.2*2=0.4 0

(Fractionrepeats,theproductis thesameasinthefirststep)

Readtheintegerpartsfromtoptobottomtoobtaintheequivalent

fractionalbinarynumber. Hence0.2 =0.00110011…

2.8 ConversionofDecimaltoHexadecimal

Decimalnumbers’conversiontohexadecimalissimilartobinary conversion.

Decimal numbers can be converted into hexadecimal format by the sum of weighted

hex digits method and by repeated division by 16. The sum of weighted hex digits

method is suitable for small decimal numbers of maximum 3 digits. The method of

repeated division by 16 is preferable for the conversion of larger numbers.

The exponent of the smallest power of 16 that is greater than the given

decimal number will indicate the number of hexadecimal

digitsthatwillbepresentintheconvertedhexadecimalnumber.For

example,thedecimalnumber948,whenconvertedintohexadecimal

numberhas3hexadecimaldigits.

(163= 4096)> 948> (162=256)

Hence,thehexadecimalrepresentationof948has3hexdigits.

Theconversionprocessisasfollows:

162 161 160

3 948–(3*256)=180

10

10 16

16

162 161 160

3 B 948–(3*256+11*16)=4

162 161 160

3 B 4 948–(3*256+11*16+4)=0

Hence, 948 =3B4

Thestepsinvolvedintherepeateddivisionby16toobtainthe

hexadecimalequivalentareasfollows:

· Dividethedecimalnumberby16andnotetheremainder.

Expresstheremainderasahexdigit.

· Repeattheprocessuntilthequotientiszero

Example:

Process quotient remainder

948 / 16 =59 4 (LSB)

59 / 16= 3 11(B)

3 / 16= 0 3 (MSB)

948 = 3B4

2.9 OctalRepresentation

Anoctalnumberisrepresentedusingbase8. Octal representation is just a

simple extension of binary and decimal representations but using only the digits 0

to7. To convert an octal number to a decimal number, it is required to multiply each

octal digitbytheappropriatepowerof8andaddtheresults.

8

10

10

2.10.1Sign+magnituderepresentation

The simplest form of representing a negative integer is the

sign+magnituderepresentation.Inasequenceofnbits,theleftmost bit is used for sign and the

remaining n-1 bits are used to hold the magnitudeoftheinteger. Thusinasequenceof4bits,

0100 = +4

1100 = -4

As there are several drawbacks in this representation, this method has not been adopted

to represent signed integers. There aretworepresentationsfor0inthisapproach.

0000 = +0
10

1000 = -0

Henceitisdifficulttotestfor0,whichisanoperation,performed frequently in computers.

Another drawback is that, the addition and subtraction require a consideration of both the sign

of the numbers and their relative magnitude, in order to carry out the required operation.

This would actually complicate the hardware design of thearithmeticunitofthecomputer.

Themostefficientwayof representingasignedintegerisa2’s-complementrepresentation.

In2’scomplementmethod,thereisonlyonerepresentationof0.

2.10.2. 2’s-complementrepresentation

Thismethoddoesnotchangethesignofthenumberbysimply

changingasinglebit(MSB)initsrepresentation.The2’s-complement methodusedwith-

venumbersonlyisasfollows:

a. Invertallthebitsinthebinarysequence(ie.,changeevery0

to1andevery1to0ie.,1’scomplement)

b. Add1totheresult

Thismethodworkswellonlywhenthenumberofbitsusedbythe

systemisknownintherepresentationofthenumber.Careshouldbe

takentopad(fillwithzeros)theoriginalvalueouttothefullrepresentation

widthbeforeapplyingthisalgorithm.

Example:

Inacomputerthatuses8-bitrepresentationtostoreanumber,the

wrongandrightapproachestorepresent–23areasfollows:

Wrongapproach:

Thebinaryequivalentof23is10111. Invertallthebits=>01000

Add1totheresult=>01001

Padwithzerostomake8-bitpattern=>00001001=>+9

Rightapproach:

Thebinaryequivalentof23is10111

Padwithzerostomake8-bitpattern=>00010111

Invertallthebits=> 11101000

Add1totheresult=>11101001=>-23

2.10.3Manualmethodtorepresentsignedintegersin2’s complementform

Thisisaneasierapproachtorepresentsignedintegers.Thisisfor-venumbersonly.

Step1:Copythebitsfromrighttoleft,throughandincludingthefirst1.

Step2:Copytheinverseoftheremainingbits.

Example1:

Torepresent–4ina4-bitrepresentation:

Thebinaryequivalentoftheinteger4is0100

2

2 10

2 10

Asperstep1,copythebitsfromrighttoleft,throughandincludingthe first1 =>100

Asperstep2,copytheinverseoftheremainingbits=>1100=>-4

Example2:

Torepresent–23ina8-bitrepresentation:

Thebinaryequivalentof23is00010111

As per step 1: 1

Asperstep2:11101001=>-23

2.10.4 Interpretationofunsignedandsignedintegers

Signed number versus unsigned number is a matter of

interpretation.Asinglebinarysequencecanrepresenttwodifferent values.

Forexample,considerabinarysequence11100110.

The decimal equivalent of the above sequence when

consideredasanunsignedintegeris:

11100110 =230

Thedecimalequivalentofthesequencewhenconsideredas

asignedintegerin2’scomplementformis:

11100110 =-26 (after2’scomplementandaddnegativesign).

Whencomparingtwobinarynumbersforfindingwhichnumber is greater, the

comparison depends on whether the numbers are

consideredassignedorunsignednumbers.

Example:

X=1001

Y=0011

Is(X>Y)/*Isthistrueorfalse?*/

ItdependsonwhetherXandYareconsideredassignedorunsigned. IfXandYareunsigned:

XisgreaterthanY

IfXandYaresigned: Xislessthan Y.

2.10.5Rangeofunsignedandsignedintegers

Ina4-bitsystem,therangeofunsignedintegersisfrom0to

15,thatis,0000to1111inbinaryform.Eachbitcanhaveoneoftwo values 0 or 1. Therefore,

the total number of patterns of 4 bits will be 2 X 2 X 2 X 2 = 16. In an n-bit system,

the total number of patternswillbe2n..Hence,ifnbitsareusedtorepresentanunsigned

integervalue,therangeisfrom0to2n-1,thatis,thereare2ndifferent values.

Incaseofasignedinteger,themostsignificant(leftmost)bit is used to represent a

sign. Hence, half of the 2npatterns are used

forpositivevaluesandtheotherhalffornegativevalues.Therange

ofpositivevaluesisfrom0to2n-1-1andtherangeofnegativevalues isfrom–1to–2n-

1.Ina4-bitsystem,therangeofsignedintegersis from–8to+7.

2.11BinaryArithmetic

Digitalarithmeticusuallymeansbinaryarithmetic. Binary

arithmeticcanbeperformedusingbothsignedandunsignedbinary numbers.

2.11.1BinaryAddition–Unsignednumbers

Whentwodigitsareadded,iftheresultislargerthanwhatcanbe

containedinonedigit,acarrydigitisgenerated.Forexample,ifwe add 5 and 9, the result will be 14.

Since the result cannot fit into a singledigit,acarryisgeneratedintoaseconddigitplace.Whentwo

bitsareaddeditwillproduceasumbitandacarrybit.Thecarrybit maybezero.

Example:

0+0=00

0+1=0 1

carrybit sum bit

1 + 1 = 1 0

carrybit sum bit

Thesumbitistheleastsignificantbit(LSB)ofthesumoftwo

1-bitbinarynumbersandthecarrybitholdsthevalueofcarry(0or

1)resultingfromtheadditionoftwobinarynumbers.

Example1:

Calculatethesumofthenumbers,1100and1011:

1100

1011

—————

1 0 1 1 1 carry bit ———

——

Example2:

sumbits

Calculate10111+10110

111

1 0 1 1 1

1 0 1 1 0

———————

1 0 1 1 0 1

———————

Carrybits

In unsigned binary addition, the two operands are called

augendandaddend. Anaugendisthenumberinanaddition

operationtowhichanothernumberisadded. Anaddendisthe

numberinanadditionoperationthatisaddedtoanother.

2.11.2Binaryaddition–signednumbers

Signedadditionisdoneinthesamewayasunsignedaddition. The only difference is

that, both operands must have the same number of magnitude bits and each must

have a sign bit. As we

havealreadyseen,inasignednumber,themostsignificantbit(MSB) is a sign bit while the

rest of the bits are magnitude bits. When the

numberisnegative,thesignbitis1andwhenthenumberispositive, thesignbitis0.

10

10
+5

10

Example1:

Add+2

and+5

1
0.

Writetheoperandsandthesumas4-bitsigned

binarynumbers.
+2 0010

+5 0101

—— —————

+7 0111

—— —————

magnitudebits signbit

Iftheresultoftheoperationispositive,wegetapositivenumberin ordinarybinarynotation.

Example2: (Useof2’scomplementinsignedbinaryaddition)

Add–7 using4-bitsystem.

In2’complementform,-7isrepresentedasfollows:

Inbinaryform,7isrepresentedas: 0111

Invert the bits (1 to 0 and 0 to 1) 1 0 0 0

Add1 1

Hence,-7in2’scomplementformis 1001 (-7)

+0101(5)

——————

1110(-2)

——————

+4
10 10

10 10

Iftheresultoftheoperationisnegative,wegetanegativenumber

in2’scomplementform.Insomecases,thereisacarrybitbeyondthe

endofthewordsizeandthisisignored.

Example3:

Add -4 . Use4-bitsystem.

1100 (-4in2’scomplementform)

0100 (+4)
——————

1 0000 =0

——————

In the above example, the carry bit goes beyond the end of the word and this

can be ignored. In this case both operands are having different signs. There will be

no error in the result. On any addition, the result may be larger than can be held in

the word size beingusedandthiswouldresultinoverflow.

Theoverflowconditionisbasedontherule:

If two numbers are added and if they are either positive or

negative,thenoverflowoccursifandonlyiftheresulthastheopposite sign.

Example4:

Add (-7)+(-5) usingthewordsize4.

1 00 1 (-7 in 2’s complement form)

1 01 1 (-5 in 2’s complement form)
——————

1 0 10 0 (The result is wrong)
——————

Intheaboveexamplebothoperandsarenegative.ButtheMSB

oftheresultis0thatistheresultispositive(oppositesign)andhence

overflowoccursandtheresultiswrong.

2.11.3BinarySubtraction

Subtrahendandminuendarethetwooperandsinanunsigned binarysubtraction.

Theminuendisthenumberinasubtraction

operationfromwhichanothernumberissubtracted.Thesubtrahend

isthenumberthatissubtractedfromanothernumber.Simplebinary

subtractionoperationsareasfollows:

0–0 = 0

1–0 = 1

1–1 = 0

10–1 = 1

Whensubtracting1from0,borrow1fromthenextmostsignificant

bit(MSB).Whenborrowingfromthenextmostsignificantbit,ifitis1,

replaceitwith0.Ifthenextmostsignificantbitis0,youmustborrow

fromamoresignificantbitthatcontains1andreplaceitwith0andall

0suptothatpointbecome1s.

Example1:

Subtract 1101–1010

01

borrow

1101 (minuend)

-1010 (subtrahend)

—————

0011

—————

Whensubtractingthe2ndleastsignificantbit(1inthesubtrahend)

from0(intheminuend),a1isborrowedfromthemoresignificantbit

(3rdbitfromrightintheminuend)andhence10–1=1.The3rdleast significantbitismadeas0.

Example2:

Subtract 1000–101

011 afterborrowing,theminuendwillbecome

1 0 0 0 0 11 10

- 1 0 1 1 0 1(subtrahend)

———

00 11 differenceasperthebasicoperationsforsubtraction

Tosubtractonenumber(subtrahend)fromanother(minuend),

takethe2’scomplementofthesubtrahendandaddittotheminuend.

Example3:

Subtract(+2)–(+7)using4-bitsystem

00 10 (+2)

01 11 (+7)

1001 (-7in2’scomplementform)

00 10 (2)

+ 1 001 (-7)

——————

10 11 (-5)

——————

Example4:

Subtract(-6)–(+4)using4bitsystem

Minuend -6 1 01 0

2’scomplementoftheSubtrahend-4 1 10 0

——————

10110

——————

Both numbers are represented as negative numbers. While adding them, the result will

be :10110. As the word size is 4, the carry bit goes beyond the end of the word and the result is

positive astheMSBis0.Thiscaseleadstooverflowandhencetheresultis wrong.

Theoverflowruleworksinsubtractionalso.

2.12 Booleanalgebra

Boolean algebra is a mathematical discipline that is used for

designingdigitalcircuitsinadigitalcomputer.Itdescribestherelation between inputs and outputs of

a digital circuit. The name Boolean

algebrahasbeengiveninhonorofanEnglishmathematicianGeorge

Boolewhoproposedthebasicprinciplesofthisalgebra.Aswithany algebra, Boolean algebra makes

use of variables and operations

(functions).ABooleanvariableisavariablehavingonlytwopossible

valuessuchas,trueorfalse,oras,1or0. Thebasiclogical operations

areAND,ORandNOT,whicharesymbolically

representedbydot,plussign,andbyoverbar/singleapostrophe.

Example:

A AND B =A.B A OR B

=A+B

NOT A =A’ (orA)

ABooleanexpressionisacombinationofBooleanvariables, Boolean Constants

and the above logical operators. All possible

operationsinBooleanalgebracanbecreatedfromthesebasiclogical operators. There are

no negative or fractional numbers in Boolean algebra.

TheoperationANDyieldstrue(binaryvalue1)ifandonlyifbothof itsoperandsaretrue.

TheoperationORyieldstrueifeitherorbothof

itsoperandsaretrue.TheunaryoperationNOTinvertsthevalueofits

operand.Thebasiclogicaloperationscanbedefinedinaformknown

asTruthTable,whichisalistofallpossibleinputvaluesandtheoutput

responseforeachinputcombination.

2.12.1Booleanoperators(functions) ANDoperator

TheANDoperatorisdefinedinBooleanalgebrabytheuseofthe

dot(.)operator.Itissimilartomultiplicationinordinaryalgebra.The

ANDoperatorcombinestwoormoreinputvariablessothattheoutput

istrueonlyifalltheinputsaretrue.Thetruthtablefora2-inputAND

operatorisshownasfollows:

A B Y

0 0

0 1

1 0

1 1

0

0

0

1

Theabove2-inputANDoperationisexpressedas:Y=A.B ORoperator

TheplussignisusedtoindicatetheORoperator.TheORoperator combines two or more

input variables so that the output is true if at least one input is true. The truth table

for a 2-input OR operator is shownasfollows:

A B Y

0 0

0 1

1 0

1 1

0

1

1

1

Theabove2-inputORoperationisexpressedas: Y=A+B

NOToperator

The NOT operator has one input and one output. The input is

eithertrueorfalse,andtheoutputisalwaystheopposite,thatis,the NOT operator inverts the input.

The truth table for a NOT operator whereAistheinputvariableandYistheoutputisshownbelow:

A Y

0

1

1

0

TheNOToperatorisrepresentedalgebraicallybytheBoolean expression: Y=A

Example:ConsidertheBooleanequation: D = A + (B . C)

Disequalto1(true)ifAis1orif(B.C)is1,thatis,B=0andC=

1. OtherwiseDisequalto0(false).

ThebasiclogicfunctionsAND,OR,andNOTcanalsobe

combinedtomakeotherlogicoperators.

NANDoperator

The NAND is the combination of NOTandAND.The NAND is

generatedbyinvertingtheoutputofanANDoperator. Thealgebraic

expressionoftheNANDfunctionis:

Y=A.B

TheNANDfunctiontruthtableisshownbelow:

A B Y

0 0

0 1

1 0

1 1

1

1

1

0

A NAND B = NOT (A AND B)

NORoperator

The NOR is the combination of NOT and OR. The NOR is generated by inverting the

output of an OR operator. The algebraic expressionoftheNORfunctionis:

Y= A+B

TheNORfunctiontruthtableisshownbelow:

A B Y

0 0

0 1

1 0

1 1

1

0

0

0

A NOR B = NOT (A OR B)

2.12.2LawsofBooleanalgebra

Boolean algebra helps to simplify Boolean expressions in order to minimize the

number of logic gates in a digital circuit. You

willstudyaboutlogicgatesintheforthcomingchapter.Thischapter focuses on the theorems of

Boolean algebra for manipulating the Booleanexpressionsinordertosimplifythem.

BooleanIdentities

LawsofComplementation

Thetermcomplementsimplymeanstochange1sto0sand0sto1s. Theorem1 : IfA=0, thenA=1

Theorem2 : IfA=1, thenA=0

Theorem3 : ThecomplementtocomplementofAisAitself.

A = ABasic properties of

AND operator Theorem4 : A . 1 = A

IfAequals0andtheotherinputis1,theoutputis0.

IfAequals1andtheotherinputis1,theoutputis1.

ThustheoutputisalwaysequaltotheAinput. Theorem5 : A .0 = 0

Asoneinputisalways0,irrespectiveofA,theoutputisalways0.

Theorem6 : A.A=A

TheoutputisalwaysequaltotheAinput. Theorem7 : A .A = 0

RegardlessofthevalueofA,theoutputis0.

BasicpropertiesofORoperator

Theorem8 : A+1 = 1

IfAequals0andtheotherinputis1,theoutputis1.

IfAequals1andtheotherinputis1,theoutputis1.

Thustheoutputisalwaysequalto1regardlessofwhatvalueA

takeson.

Theorem9 : A +0 = A

TheoutputassumesthevalueofA. Theorem10 :A+A=A

TheoutputisalwaysequaltotheAinput. Theorem11 :A +A = 1

RegardlessofthevalueofA,theoutputis1.

2.12.3SimplificationofBooleanexpressions

Before seeing the important theorems used in the simplification of Boolean

expressions, some Boolean mathematical conceptsneedtobeunderstood.

Literal

Aliteralistheappearanceofavariableoritscomplementina

Booleanexpression.

ProductTerm

AproductterminaBooleanexpressionisatermwhereoneor

moreliteralsareconnectedbyANDoperators.Asingleliteralisalsoa productterm.

Example: AB,AC,AC,andEaretheproductterms.

Minterm

Amintermisaproductterm,whichincludesallpossiblevariables

eithercomplementedoruncomplemented. InaBooleanexpression of3variables,x,

y,andz,thetermsxyz,xyz,andxyzareminterms.

Butxyisnotaminterm.Mintermisalsocalledasastandardproduct term.

Sumterm

AsumterminaBooleanexpressionisatermwhereoneormore literalsareconnectedbyORoperators.

Example: A+B+D

Maxterm

A maxtermis a sum term in a Boolean expression, which

includesallpossiblevariablesintrueorcomplementform. Ina Boolean expression of 3 variables,

x, y, and z, the terms x + y + z, andx+y+zarethemaxterms.Maxtermisalsocalledasstandard

sumterm.

Sum-of-products(SOP)

AsumofproductsexpressionisatypeofBooleanexpression

whereoneormoreproducttermsareconnectedbyORoperators.

Example: A+AB+ABC

Inanexpressionof3variables,A,B,andC,theexpression

ABC+ ABC+ABCisalsocalledasacanonicalsumorsumof

standardproducttermsorsumofminterms.

Product-of-sums(POS)

ProductofsumsisatypeofBooleanexpressionwhereseveral

sumtermsareconnectedbyANDoperators.

Example: (A+B)(A+B)(A+B)

A canonical product or product of standard sum terms is a

productofsumsexpressionwhereallthetermsaremaxterms.The above example is a canonical

product in a Boolean expression of twovariablesAandB.

Theorem12:CommutativeLaw

Amathematicaloperationiscommutativeifitcanbeappliedto

itsoperandsinanyorderwithoutaffectingtheresult.

Additionandmultiplicationoperationsarecommutative.

Example:

A + B = B + A AB = BA

Subtractionisnotcommutative:

A - B ≠B-A

ThereisnosubtractionoperationinBooleanalgebra.

Theorem13: AssociativeLaw

Amathematicaloperationisassociativeifitsoperandscanbe

groupedinanyorderwithoutaffectingtheresult.Inotherwords,the

orderinwhichonedoestheORoperationdoesnotaffecttheresult.

(A + B) + C =A + (B+C) = (A + C) + B

Similarly,theorderinwhichonedoestheANDoperationdoes notaffecttheresult.

(AB)C=A(BC)=(AC)B

Theorem14: DistributiveLaw

ThedistributivepropertyallowsustodistributeanANDacross

severalORfunctions.

Example:

A(B+C)=AB+AC

Thefollowingdistributivelawisworthnotingbecauseitdiffers

fromwhatwewouldfindinordinaryalgebra.

A + (B.C) = (A + B).(A + C)

Thesimplestwaytoprovetheabovetheoremistoproducea truth table for both the

right hand side (RHS) and the left hand side

(LHS)expressionsandshowthattheyareequal.

A B C BC LHS A+B A+C RHS

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 1 1

1 0 0 0 1

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

0 0 0

0 1 0

1 0 0

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

MinimumSumofProducts

AminimumsumofproductsexpressionisoneofthoseSumof Products expressions for a

Boolean expression that has the fewest numberofterms.

ConsiderthefollowingBooleanExpression:

A B C + A B C + A B C + A B C + A B C

UsingAssociativityLaw

= (A B C + A B C) + (A B C + A B C) + A B C

=AB(C+C)+AB(C+C)+ABC UsingTheorem11

=AB(1)+AB(1)+ABC UsingTheorem4

=AB+AB+ABC

Theaboveexpressionisintheminimumsumofproductsform. The given Boolean

expression can be rewritten as follows using theorem10.

ABC+ABC+ABC+ABC+ABC+ABC(ABC+ABC=ABC)

=(ABC+ABC)+(ABC+ABC)+(ABC+ABC)

= A B (C + C) + A B (C + C) + A C(B + B)

= A B + A B + A C

The same Boolean expression can be simplified into many

minimumsumofproductsform.

Examples:

SimplifythefollowingBooleanExpression

A B C + A B C Let x = A B and y

= C

TheaboveBooleanexpressionbecomes x y + x y

= x(y + y)

= x = A B

Prove thatA+AB=A+B

AccordingtoDistributiveLaw

A+AB=(A+A)(A+B) =1·(A+B)=A+B

SimplifythefollowingBooleanExpression

A B C + A B C + A B C + A B C

= A C(B + B) + A B C + A B C

= A C + A B C + A B C

=A(C+BC)+ABC

= A(C + B)(C + C) + A B C

= A(C + B) + A B C

=AC+AB+ABC (oneminimalform)

InthegivenBooleanExpression,ifthesecondandthirdterms aregrouped,itwillgive

ABC+(ABC+ABC)+ABC

= A B C + A B(C + C) + A B C

= A B C + A B + A B C

= B C(A + A) + A B

=BC+AB (mostminimalform)

2.12.4 DeMorgan’sTheorems Theorem 15: A + B =

A B Theorem 16: AB = A + B

The above identities are the most powerful identities used in

Booleanalgebra.Byconstructingthetruthtables,theaboveidentities canbeprovedeasily.

Example:

GivenBooleanfunctionf(A,B,C,D)=DAB+AB+DAC,Findthe

complementoftheBooleanfunction

f(A,B,C,D)=DAB+AB+DAC

ApplyDeMorgan’sLaw(theorem15)

=(DAB)(AB) (DAC)

ApplyDeMorgan’sLaw(theorem16)

= (D + A + B)(A + B)(D + A + C)

Intheaboveproblem,thegivenBooleanfunctionisinthesum

ofproductsformanditscomplementisintheproductofsumsform.

The DeMorgan’stheorem says that any logical binary

expressionremainsunchangedifwe,

changeallvaribalestotheircomplements

changeallANDoperationstoORoperations

changeallORoperationstoANDoperations

takethecomplementoftheentireexpression

A practicaloperationalwaytolookatDeMorgan’stheorem

isthattheinversionofanexpressionmaybebrokenatanypointand

theoperationatthatpointreplacedbyitsoppostie(i.e.,ANDreplaced byORorviceversa)

0

0

UNIT - II

COMBINATIONAL VS SEQUENTIAL

A combinational circuit:

• A t any time, outputs depends only on inputs

• C h a n g i n g inputs changes outputs

• N o regard for previous inputs

• N o memory (history)

• T i m e is ignored!

A sequential circuit:

• A combinational circuit with feedback through memory

• The stored information at any time defines a state

• Outputs depends on inputs and previous inputs

• Previous inputs are stored as binary information into memory

• Next state depends on inputs and present state

Half Adder

The circuit that performs addition within the Arithmetic and Logic Unit of the CPU are called adders.

A unit that adds two binary digits is called a half adder and the one that adds together three binary digits is

called a full adder.

A half adder sums two binary digits to give a sum and a carry. This simple addition consists of

four possible operations.

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 1

The first three operations produce a single digit sum, while the fourth one produces two digit sum.

The higher significant bit in this operation is called a carry. So the carry of the first three operations are ‘0’,

where the fourth one produces a carry ‘1’.

The boolean realization of binary addition is shown in the truth table. Here A and B are inputs

to give a sum S and a carry C.

Input Sum Minterms

Of S

Carry Minterms

of C A B S C

0 0 0 - 0

0 1 1 A.B 0

1 0 1 A.B 0

1 1 0 1 A.B

The boolean functions corresponding to the sum and carry are

S = A . B + A . B C = A . B

Which can be realized using logic circuit as,

which is further simplified as

In a half adder, an AND gate is added in parallel to the XOR gate to generate the carry

and sum respectively. The ‘sum’ column of the truth table represents the output of the XOR

gate and the

‘carry’ column represents the output of the AND gate.

 Full Adder

A half adder logic circuit is a very important component of computing systems. As this circuit

cannot accept a carry bit from a previous addition, it is not enough to fully peform additions for binary

number greater than 1. In order to achieve this a full adder is required.

A full adder sums three input bits. It consists of three inputs and two outputs. Two of the

inputs represent the two significant bits to be added and the third one represents the carry from the

previous significant position.

Here A, B referred as the inputs, C1 as carry input from the previous stage, C2 as carry output

Input Output

A B C C S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

and S as sum.

1 2

S = A B C1 + A B C1 + A B C1 + A B C1

C2 = A B C1 + A B C1 + A B C1 + A B C1

Consider

(A⊕ B) ⊕ C1 = (A B + A B) ⊕ C1

 = (A B + A B) C1 + (A B + A B) C1

 = ((A B) (A B)) C1 + (A B + A B) C1

 = ((A + B) (A + B)) C1 + (A B + A B) C1

Also

Hence

To realize the full adder we need two 2-input XOR, two 2- input AND gates and a

2-input OR gate.

Hence the full adder can be realized as.

Notice that the full adder can be constructed from two half adders and an OR gate.

If the logic circuit outputs are based on the inputs presented at that time, then they are called

combinational circuit. The half adder and full adder circuits are the examples for the combinational circuits. On

the other hand, if the logic circuit outputs are based on, not only the inputs presented at that time, but also the

previous state output, then they are called sequential circuits.

There are two main types of sequential circuits. A synchronous sequential circuit is a system whose

output can be defined from its inputs at discrete instant of time. The output of the asynchronous sequential

circuit depends upon the order in which its input signals change at any instance of time. The flip-flop circuit

is an example of sequential circuit.

 The Flip-Flop

A flip flop is a circuit which is capable of remembering the value which is given as input. Hence it can be

used as a basic memory element in a memory device. These circuits are capable of storing one bit of

information.

Basic flip-flops

A flip-flop circuit can be constructed using either two NOR

gates or two NAND gates.

A common example of a circuit employing sequential logic is the flip-flop, also called a bi-stable

gate. A simple flip-flop has two stable states. The flip-flop maintains its states indefinitely until an input

pulse called a trigger is received. If a trigger is received, the flip-flop outputs change their states according to

defined rules, and remain in those states until another trigger is received.

Flip – Flop Circuit using NOR Gates

By cross-coupling two NOR gates, the basic operation of a flip-flop could be demonstrated. In this

circuit the outputs are fed back again to inputs.

Fig. 4.21 Flip Flop Circuit using NOR Gates

The flip-flop circuit has two outputs, one for the normal value Q and another for the complement value Q.

 It also has two inputs S (set) and R (reset). Here, the previous output states are fed back to determine the

current state of the output.

The NOR basic flip-flop circuit operates with inputs normally at ‘0’ unless the state of the flip-flop has to

be changed.

As a starting point, we assume S = 1 and R = 0. This makes Q = 0. This Q = 0 is again given along with R = 0

to make Q = 1.

 ie. when S = 1 and R = 0 make Q = 1 and Q = 0.

When the input S returns to ‘0’, the output remains the same, because the output Q remain as ‘1’ and Q

as ‘0’.

We assume S = 0 and R = 1. This make Q = 0. This Q = 0 is again given along with S = 0 to make Q =

1.

ie. when S = 0 and R = 1 make Q = 0 and Q = 1.

When the reset input returns to 0, the outputs do not change, because the output Q remains as ‘0’ and Q

as ‘1’.

ie. when S = 0 and R = 0 make Q = 0 and Q = 1 after S = 0 and R=1.

When ‘1’ is applied to both S and R, the outputs Q and Q become 0.

These facts violate the output Q and Q are the complements of each other.

In normal operations this condition mustbe avoided.

Thus a basic flip-flop has two useful states.

When Q = 1 and Q = 0, it is called as set state. When Q = 0 and Q = 1, it is called as reset state.

Flip – Flop Circuit using NAND Gates

In a similar manner one can realize the basic flip-flop by cross coupling two

NAND gates.

Fig. 4.22 Flip Flop Circuit using NAND Gates

The corresponding truth table is given as

The NAND basic flip-flop circuit operates with inputs normally at ‘1’ unless the state

of the flip-flop has to be changed. A momentary ‘0’ to the input S gives Q = 1 and Q = 0.

This makes the flip-flop to set state.

 After the input S returns to 1, a momentary ‘0’ to the input R gives Q = 0 and Q = 1.

S R Q Q

1 0 1 0

0 0 1 0 (after S =1 and R = 0)

0 1 0 1

0 0 0 1 (after S =0 and R = 1)

S R Q Q

1 0 0 1

1 1 0 1 (after S =1 and R = 0)

0 1 1 0

1 1 1 0 (after S =0 and R = 1)

This makes the flip-flop to reset state.

When both the inputs become 0, ie., S = 0 and R = 0, both the outputs become 1.

This condition must be avoided in the normal operation

There are several kinds of flip-flop circuits, with designators such as D, T, J-K, and

R-S. Flip-flop circuits are interconnected to form the logic gates that comprise digital

integrated circuits (ICs) such as memory chips and microprocessors.

D-type Flip-Flops

 Have following inputs:

– D
– Clock (CLK)

– S
– R

 Have following outputs
– Q
– Q
– On clock edge, the value on D is transferred to Q

and stays there

R and S are used to put device into known state

JK Flip-flops

 Operation similar to D-type except has two inputs J and K

 When J is HIGH, flip-flop is SET

 When K is HIGH, flip-flop is RESET

 If both J and K are high, output simply TOGGLES

J K Next State of Q

0 0 No change

0 1 0

1 0 1

1 1 Toggle

T Flip-flop

 T flip-flop: single-input version of the J-K flip flop, formed by tying both inputs

together.

 Characteristic table.

SEQUENTIAL CIRCUITS

• Two types of sequential circuits:

• Synchronous: The behavior of the circuit depends on the input signal at

discrete instances of time (also called clocked)

• Asynchronous: The behavior of the circuit depends on the input signals at any

instance of time and the order of the inputs change

• A combinational circuit with feedback

The storage elements (memory) used in clocked sequential circuits are called flip-flops

• Each flip-flop can store one bit of information 0,1

• A circuit may use many flip-flops; together they define the circuit state

• Flip-Flops (memory/state) update only with the clock

Decoder

 A decoder is a combinational circuit that converts binary information from n input

lines to a maximum of 2
n

unique output lines. A decoder does not contain input data. A

encoder is a digital function that produces a reverse operation from that of a decoder.

Decoder types

1 Binary n to 2

n
Decoder

1. 2 to 4 Binary Decoder

 2 3 to 8 Binary Decoder

 A decoder is a multiple-input, multiple-output logic circuit that converts coded inputs into

coded outputs, where the input and output codes are different; e.g. n-to-2n, BCD decoders.

Enable inputs must be on for the decoder to function, otherwise its outputs assume a single

"disabled" output code word.

Decoding is necessary in applications such as data multiplexing, 7 segment display and memory

address decoding.

Figure 11.1 Pseudo Block of a Decoder

1. Binary n to 2n Decoder

A binary decoder has n inputs and 2n outputs. Only one output is active at any one

time, corresponding to the input value.

Figure 11.2 Symbol of n to 2
n

Decoder

1.1 to 4 Binary Decoder

A 2 to 4 decoder consists of two inputs and four outputs, truth table and symbols of

which is shown below.

X Y F0 F1 F2 F3

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

Table 11.1 Truth table of 2 to 4 Binary Decoder

Figure 11.3 Symbol of 2 to 4 Decoder

Note: Each output is a 2-variable minterm (X'Y', X'Y, XY', XY)

Figure 11.4 Circuit of 2 to 4 Decoder

1.2 3 to 8 Binary Decoder

A 3 to 8 decoder consists of three inputs and eight outputs, truth table and symbols of which is

shown below.

Figure 11.5 Symbol of 3 to 8 Binary Decoder

X Y Z F0 F1 F2 F3 F4 F5 F6 F7

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

Figure 11.6 Circuit of 3 to 8 Decoder

Implementing Functions Using Decoders

Any n-variable logic function, in canonical sum-of-minterms form can be implemented using a

single n-to-2n decoder to generate the minterms, and an OR gate to form the sum.

The output lines of the decoder corresponding to the minterms of the function are used as

inputs to the or gate.

Any combinational circuit with n inputs and m outputs can be implemented with an n- to-2n

decoder with m OR gates.
Suitable when a circuit has many outputs, and each output function is expressed with

few minterms.

ENCODERS

2 Encoders

1 Binary 2n to n Encoder

2 Octal to Binary Encoder

3 .3 Decimal to Binary Encoder

An encoder is a combinational circuit that performs the inverse operation of a decoder. If a
device output code has fewer bits than the input code has, the device is usually called an encoder.
e.g. 2

n
-to-n, priority encoders.

11.2.2.1 Binary 2
n

to n Encoder

The simplest encoder is a 2n-to-n binary encoder, where it has only one of 2n inputs =

1 and the output is the n-bit binary number corresponding to the active input.

Figure 11.7 Symbol of 2
n

to n Binary Encoder

11.2.2.2 Octal to Binary Encoder

Octal-to-Binary take 8 inputs and provides 3 outputs, thus doing the opposite of what the 3-to-8

decoder does. At any one time, only one input line has a value of 1.

I0 I1 I2 I3 I4 I5 I6 I7 Y2 Y1 Y0

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 1 1 1 1

Table 11.3 Truth table of Octal-to-Binary Encoder

For an 8-to-3 binary encoder with inputs I0-I7 the logic expressions of the outputs

Y0-Y2 are:

Y0 = I1 + I3 + I5 + I7

Y1= I2 + I3 + I6 + I7

Y2 = I4 + I5 + I6 +I7

Based on the above equations, we can draw the circuit as shown below

2.3 Decimal to Binary Encoder

Decimal-to-Binary take 10 inputs and provides 4 outputs, thus doing the opposite of what the 4-

to-10 decoder does. At any one time, only one input line has a value of 1. The figure below shows

the truth table of a Decimal-to-binary encoder

From the above truth table , we can derive the functions Y3, Y2, Y1 and Y0 as given below.

Y3 = I8 + I9

Y2 = I4 + I5 + I6 + I7

Y1 = I2 + I3 + I6 + I7

Y0 = I1 + I3 + I5 + I7 + I9

MULTIPLEXER

 A multiplexer is a combinatorial circuit that is given a certain number (usually a power of two) data

inputs, let us say 2n, and n address inputs used as a binary number to select one of the data inputs.

The multiplexer has a single output, which has the same value as the selected data input.

 Multiplexing means transmitting a large number of information units over a smaller number of

channels or lines. A digital multiplexer is a combinational circuit that selects from binary information

one of many input lines and directs it to a single output line.

 The selection of a particular input is controlled by a set of selection lines. These circuits are used

when a complex logic circuit is shared by number of input

I

0

I

1

I

2

I

3

I

4

I

5

I

6

I

7

I

8

I

9

Y

3

Y

2

Y

1

Y

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0 0 0 0 1 1 0

0 0 0 0 0 0 0 1 0 0 0 1 1 1
0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 1

Table 12.1 Truth Table of 4 : 1 Multiplexer

 Assume that we have four lines, C0, C1, C2 and C3, which are to be multiplexed on a single

line, Output (f). The four input lines are also known as the Data Inputs. Since there are four inputs,

we will need two additional inputs to the multiplexer, known as the Select Inputs, to select which

of the C inputs is to appear at the output. Call these select lines A and B.

The gate implementation of a 4-line to 1-line multiplexer is shown below:

REGISTERS

• A register is a group of flip- flops.

– Each flip-
flop stores one bit of data; n flip- flops are required to store n bits of
data.

– There are several different types of registers available commercially.

– The simplest design is a register consisting only of flip- flops, with no
other gates in the circuit.

• Loading the register – transfer of new data into the register.

• The flip- flops share a common clock pulse (frequently using a buffer
to reduce power requirements).

• Output could be sampled at any time.

A B f

0 0 C0

0 1 C1

1 0 C2

1 1 C3

• Clearing the flip-flop (placing zeroes in all its bit) can be done through a
special terminal on the flip- flop

Shift Registers

• A shift register is a register which can shift its data in

one or both directions.

• The simplest shift register simply connects the flip-

flops to their respective neighbor with the clock

controlling the operation.

• If we wish to shift on some clock pulses but not others,

we can inhibit the clock pulses

on which we do not to shift.

Serial Transfer

• A digital system is operating in a serial mode when information is
transferred and manipulated one bit at a time, with bits transferred
out of the source register into the destination register.

• This is different from parallel transfer where all the bits of a
register are transferred at once.

• Serial transfer of information from register A to register B is done
with shift registers, where the serial output from register A serves as
the serial input for register B.

Registers

Level One Cache

Level Two Cache

Main Memory

NUMA

Virtual Memory

File Storage

Network Storage

Near-Line Storage

Off-Line Storage

Hard Copy

1
 The Memory Hierarchy

 Most modern programs can benefit greatly from a large amount of very fast memory. A physical

reality, however, is that as a memory device gets larger, it tends to get slower. For example, cache memories

are very fast but are also small and expensive. Main memory is inexpensive and large, but is slow.

At the top level of the memory hierarchy are the CPU’s general purpose registers. The registers

provide the fastest access to data possible on the 80x86 CPU. The register file is also the smallest memory

object in the memory hierarchy (with just eight general purpose registers available

 Working our way down, the Level One Cache system is the next highest performance subsystem in
the memory hierarchy. On the 80x86 CPUs, the Level One Cache is provided on-chip by Intel and cannot be
expanded. The size is usually quite small (typically between 4Kbytes and 32Kbytes), though much larger
than the registers available on the CPU chip.

 Although the Level One Cache size is fixed on the CPU and you cannot expand it, the cost per byte

of cache memory is much lower than that of the registers because the cache contains far more storage than

is available in all the combined registers.

The Level Two Cache is present on some CPUs, on other CPUs it is the system designer’s task to
incor- porate this cache (if it is present at all). For example, most Pentium II, III, and IV CPUs have a level
two cache as part of the CPU package, but many of Intel’s Celeron chips do not1. The Level Two Cache is
gen- erally much larger than the level one cache (e.g., 256 or 512KBytes versus 16 Kilobytes).

On CPUs where Intel includes the Level Two Cache as part of the CPU package, the cache is not
expandable. It is still lower cost than the Level One Cache because we amortize the cost of the CPU across
all the bytes in the Level Two Cache.

Below the Level Two Cache system in the memory hierarchy falls the main memory subsystem.

This is the general-purpose, relatively low-cost memory found in most computer systems. Typically, this is

DRAM or some similar inexpensive memory technology.

Increasing
Cost,
Increasing
Speed,
Decreasing
Size.

Decreas
ing
Cost,
Decreas
ing
Speed,
Increasi
ng Size.

Figure 6.1 The Memory Hierarchy

Below main memory is the NUMA category. NUMA, which stands for NonUniform Memory

Access is a bit of a misnomer here. NUMA means that different types of memory have different access

times. There- fore, the term NUMA is fairly descriptive of the entire memory hierarchy. however, we’ll use

the term NUMA to describe blocks of memory that are electronically similar to main memory but for one

reason or another operate significantly slower than main memory.

 A good example is the memory on a video display card. Access to memory on video display cards

is often much slower than access to main memory. Other peripheral devices that provide a block of shared

memory between the CPU and the peripheral proba- bly have similar access times as this video card

example.

Most modern computer systems implement a Virtual Memory scheme that lets them simulate main

memory using storage on a disk drive. While disks are significantly slower than main memory, the cost per

bit is also significantly lower. Therefore, it is far less expensive (by three orders of magnitude) to keep some

data on magnetic storage rather than in main memory.

A Virtual Memory subsystem is responsible for trans- parently copying data between the disk and

main memory as needed by a program.

.

Virtual Memory, File Storage, and Network Storage are examples of so-called on-line memory sub-

systems. Memory access via these mechanism is slower than main memory access, but when a program

requests data from one of these memory devices, the device is ready and able to respond to the request as

quickly as is physically possible. This is not true for the remaining levels in the memory hierarchy.

The Near-Line and Off-Line Storage subsystems are not immediately ready to respond to a

program’s request for data. An Off-Line Storage system keeps its data in electronic form (usually magnetic

or optical) but on media that is not (necessarily) connected to the computer system while the program that

needs the data is running. Examples of Off-Line Storage include magnetic tapes, disk cartridges, optical

disks, and floppy diskettes. When a program needs data from an off-line medium, the program must stop

and wait for a someone or something to mount the appropriate media on the computer system

Hard Copy storage is simply a print-out (in one form or another) of some data. If a program

requests some data and that data is present only in hard copy form, someone will have to manually enter the

data into the computer. Paper (or other hard copy media) is probably the least expensive form of memory,

at least for certain data types.

MEMORY UNITS

I. Introduction

• Basic units of Measurement

II. RAM,ROM,PROM,EPROM

• Storage versus Memory

III.Auxiliary Storage Devices-Magnetic Tape, Hard Disk, Floppy Disk

IV.Optical Disks: CD-R Drive, CD-RW disks, DVD, Blue ray Discs

I. Introduction

The computer system essentially comprises three important parts – input device, central

processing unit (CPU) and the output device. The CPU itself is made of three components

namely, the arithmetic logic unit (ALU), memory unit, and the control unit.

In addition to these, auxiliary storage/secondary storage devices are used to store data and

instructions on a long-term basis.

Central processing unit

The objective of this

chapter is to introduce the concept of Memory units of the computer which are shown in the above

figure as main memory and secondary memory.

Figure 2: Linking Memory with other units

All storage devices are characterized with the following features:

• Speed

• Volatility

• Access method

• Portability

• Cost and capacity

1.1 Basic Units of Measurement

All information in the computer is handled using electrical components like the integrated

circuits, semiconductors, all of which can recognize only two states – presence or absence of an

electrical signal. Two symbols used to represent these two states are 0 and 1, and are known as

BITS (an abbreviation for BInary DigiTS). 0 represents the absence of a signal, 1 represents the

presence of a signal. A BIT is, therefore, the smallest unit of data in a computer and can either store a

0 or 1.

Since a single bit can store only one of the two values, there can possibly be only four unique

combinations:

00 01 10 11

Bits are, therefore, combined together into larger units in order to hold greater range of values.

BYTES are typically a sequence of eight bits put together to create a single computer

alphabetical or numerical character. More often referred to in larger multiples, bytes may

appear as Kilobytes (1,024 bytes), Megabytes (1,048,576 bytes), GigaBytes

(1,073,741,824), TeraBytes (approx. 1,099,511,000,000 bytes), or PetaBytes (approx.

1,125,899,900,000,000 bytes).

Bytes are used to quantify the amount of data digitally stored (on disks, tapes) or transmitted

(over the internet), and are also used to measure the memory and document size.

II. RAM,ROM,PROM,EPROM

The Term Computer Memory is defined as one or more sets of chips that store

Data/program instructions, either temporarily or permanently. It is critical processing

component in any computer. The PCs use several different types. They are :

• Main Memory / Primary Memory units

– Two most important are

• RAM(Random Access Memory)

• ROM(Read-only Memory)

– They work in different ways and perform distinct functions

– CPU Registers

– Cache Memory

• Secondary Memory/Auxiliary Memory

Also termed as ‘auxiliary’ or ‘backup’ storage, it is typically used as a supplement to

main storage. It is much cheaper than the main storage and stores large amount of

data and instructions permanently. Hardware devices like magnetic tapes and disks fall

under this category.

Computer’s memory can be classified into two types – RAM and ROM.

 RAM or Random Access Memory is the central storage unit in a computer system. It is the

place in a computer where the operating system, application programs and the data in

current use are kept temporarily so that they can be accessed by the computer’s

processor. The more RAM a computer has, the more data a computer can manipulate.

 Random access memory, also called the Read/Write memory, is the temporary memory

of a computer. It is said to be ‘volatile’ since its contents are accessible only as long as the

computer is on. The contents of RAM are cleared once the computer is turned off.

 ROM or Read Only Memory is a special type of memory which can only be read and contents

of which are not lost even when the computer is switched off. It typically contains

manufacturer’s instructions. Among other things, ROM also stores an initial program called the

‘bootstrap loader’ whose function is to start the computer software operating, once the power is

turned on.

 Read-only memories can be manufacturer-programmed or user-programmed. While

manufacturer-programmed ROMs have data burnt into the circuitry, user- programmed ROMs

can have the user load and then store read-only programs. PROM or Programmable ROM is

the name given to such ROMs.

 Information once stored on the ROM or PROM chip cannot be altered. However, another

type of memory called EPROM (Erasable PROM) allows a user to erase the information

stored on the chip and reprogram it with new information. EEPROM (Electrically

EPROM) and UVEPROM (Ultra Violet EPROM) are two types of EPROM’s.

 Magnetic medium was found to be fairly inexpensive and long lasting medium and,

therefore, became the preferred choice for auxiliary storage. Floppy disks and hard disks

fall under this category. The newer forms of storage devices are optical storage

sk

 devices like CDs, DVDs, Pen drive, Zip drive etc.

VOLATILE MEMORY

The memory is specifically meaning the RAM. This keeps the information for a shorter

period of time (usually volatile), is faster and more expensive.

NON- VOLATILE MEMORY

By Storage we mean the Hard disk. Here the information is retained longer (non-

volatile),It’s Slower and Cheaper

III.Auxiliary Storage Devices-Magnetic Tape, Floppy Disk, Hard Disk.

The Magnetic Storage Exploits duality of magnetism and electricity. It converts electrical

signals into magnetic charges, captures magnetic charge on a storage medium and then later

regenerates electrical current from stored magnetic charge. Polarity of magnetic charge represents

bit values zero and one.

Magnetic Disk

The Magnetic Disk is Flat, circular platter with metallic coating that is rotated beneath read/write

heads. It is a Random access device; read/write head can be moved to any location on the platter.

Floppy Disk

These are small removable disks that are plastic coated with magnetic recording material.

Floppy disks are typically 3.5″ in size (diameter) and can hold 1.44 MB of data. This portable

storage device is a rewritable media and can be reused a number of times.
Floppy disks are commonly used to move files between different computers. The main

disadvantage of floppy disks is that they can be damaged easily and, therefore, are not very
reliable. The following figure shows an example of the floppy disk. Figure 3 shows a picture of
the floppy di .

Figure 3: Floppy Disk

HARD DISK

Another form of auxiliary storage is a hard disk. A hard disk consists of one or more rigid

metal plates coated with a metal oxide material that allows data to be magnetically recorded on the

surface of the platters. The hard disk platters spin at a high rate of speed, typically 5400 to 7200

revolutions per minute (RPM).Storage capacities of hard disks for personal computers range from 10

GB to 120 GB (one billion bytes are called a gigabyte).

IV.Optical Disks: CD-R Drive, CD-RW disks, DVD, Blue ray

Discs

Optical Mass Storage Devices Store bit values as variations in light reflection. They have

higher area density & longer data life than magnetic storage. They are also Standardized and

relatively inexpensive. Their Uses: read-only storage with low performance requirements, applications

with high capacity requirements & where portability in a standardized format is needed.

Example of the Optical Drives

• CD's (Compact Disk)

Their storage:

~ 700 MB storage

Their Types:
– CD-ROM (read only)

– CD-R: (record) to a CD

– CD-RW: can write and erase CD to reuse it (re-writable)

– DVD(Digital Video Disk)

CD:

Compact Disk (CD) is portable disk having data storage capacity between 650-700MB. It

can hold large amount of information such as music, full-motion videos, and text

etc. It contains digital information that can be read, but cannot be rewritten. Separate drives exist for

reading and writing CDs.

Since it is a very reliable storage media, it is very often used as a medium for

distributing large amount of information to large number of users. In fact today most of the software

is distributed through CDs.

DVD

Digital Versatile Disk (DVD) is similar to a CD but has larger storage capacity and enormous

clarity. Depending upon the disk type it can store several Gigabytes of data (as opposed to around

650MB of a CD). DVDs are primarily used to store music or movies and can be played back on your

television or the computer too. They are not rewritable media. Its also termed DVD (Digital Video

Disk)

DVD-ROM

– Over 4 GB storage (varies with format)

– DVD- ROM (read only)

– Many recordable formats (e.g., DVD-R, DVD-RW; ..)

– Are more highly compact than a CD.

– Special laser is needed to read them

Blu-ray Technology

The name is derived from the blue-violet laser used to read and write data. It was developed

by the Blu-ray Disc Association with more than 180 members. Some companies with the technology

are Dell, Sony, LG.The Data capacity is very large because Blu-ray uses a blue laser(405

nanometers) instead of a red laser(650 nanometers) this allows the data tracks on the disc to be very

compact. This allows for more than twice as small pits as on a DVD. Because of the greatly compact

data Blu- ray can hold almost 5 times more data than a single layer DVD. Close to 25 GB!.Just like

a DVD Blu-ray can also be recorded in Dual-Layer format. This allows the disk to hold up to 50

GB!!

The Variations in the formats are as follows:

• BD-ROM (read-only) - for pre-recorded content

• BD-R (recordable) - for PC data storage

• BD-RW (rewritable) - for PC data storage

• BD-RE (rewritable) - for HDTV recording

1

UNIT –III

 Input and Output Devices

The main function of a computer system is to process data. The data to be processed

by the computer must be input to the system and the result must be output back to the

external world.

1.Input Devices

An input device is used to feed data into a computer. For example, a keyboard is an

input device. It is also defined as a device that provides communication between the user and

the computer. Input devices are capable of converting data into a form which can be

recognized by computer. A computer can have several input devices.

Keyboard

`The most common input device is the keyboard. Keyboard consists of a set of

typewriter like keys that enable you to enter data into a computer. They have alphabetic keys

to enter letters, numeric keys to enter numbers, punctuation keys to enter comma, period,

semicolon, etc., and special keys to perform some specific functions. The keyboard detects

the key pressed and generates the corresponding ASCII codes which can be

recognized by the computer.

Mouse

Mouse is an input device that controls the movement of the cursor on the display

screen. Mouse is a small device, you can roll along a flat surface. In a mouse , a small ball is

kept inside and touches the pad through a hole at the bottom of the mouse. When the mouse is

moved, the ball rolls. This movement of the ball is converted into signals and sent to the

computer. You will need to click the button at the top of the mouse to select an option. Mouse

pad is a pad over which you can move a mouse. Mouse is very popular in modern computers.

Scanner

Scanner is an input device that allows information such as an image or text to be input

into a computer. It can read image or text printed on a paper and translate the information into

a form that the computer can use. That is, it is used to convert images (photos) and text into a

stream of data. They are useful for publishing and multi-media applications.

Bar Code Reader

The barcode readers are used in places like supermarket, bookshops, etc. A bar code is

a pattern printed in lines of different thickness. The bar-code reader scans the information on

the bar- codes and transmits to the computer for further processing. The system gives fast

and error-free entry of information into the computer.

Digital Camera

The digital camera is an input device mainly used to capture images. The digital

2

camera takes a still photograph, stores it and sends it as digital input to the computer. It is a

modern and popular input device.

Touch Sensitive Screen

Sensitive Screen is a type of display screen that has a touch-sensitive panel. It is a

pointing device that enables the user to interact with the computer by touching the screen. You

can use your fingers to directly touch the objects on the screen. The touch screen senses the

touch on the object (area pre-defined) and communicate the object selection to the computer.

Magnetic Ink Character Recognition (MICR)

MICR is widely used by banks to process cheques. Human readable numbers are

printed on documents such as cheque using a special magnetic ink. The cheque can be read

using a special input unit, which can recognize magnetic ink characters. This method eliminates

the manual errors. It also saves time, ensures security and accuracy of data.

Optical Character Recognition (OCR)

The OCR technique permits the direct reading of any printed character like MICR but

no special ink is required. With OCR, a user can scan a page from a book. The computer will

recognize the characters in the page as letters and punctuation marks, and stores. This can be

edited using a word processor.

Optical Mark Reading and Recognition (OMR)

In this method special pre-printed forms are designed with boxes which can be marked

with a dark pencil or ink. Such documents are read by a reader, which transcribes the marks into

electrical pulses which are transmitted to the computer. They are widely used in applications

like objective type answer papers evaluation in which large number of candidates appear, time

sheets of factory employees etc

.

Light Pen

A light pen is a pointing device shaped like a pen and is connected to a monitor. The

tip of the light pen contains a light- sensitive element which, when placed against the screen,

detects the light from the screen enabling the computer to identify the location of the pen on the

screen. Light pens have the advantage of ‘drawing’ directly onto the screen, but this can

become uncomfortable, and they are not accurate.

Magnetic Reader

o Magnetic reader is an input device which reads a magnetic strip on a card. It is

handy and data can be stored and retrieved. It also provides quick

identification of the card’s owner.

o All the credit cards, ATM cards (banks), petro cards, etc. stores data in a magnetic

strip which can be read easily by the magnetic reader.

3

Smart Cards

This input device stores data in a microprocessor embedded in the card. This allows

information, which can be updated, to be stored on the card. These data can be read and given

as input to the computer for further processing. Most of the identification cards use this

method to store and retrieve the vital information.

Notes Taker

Notes taker is a device that captures natural handwriting on any surface onto a computer.

Using an electronic pen, the notes taker displays the user’s handwritten notes, memos or

drawings on the computer, and stores the image for future use.

Microphone

Microphone serves as a voice input device. It captures the voice data and input to the

computer. Using the microphone along with speech recognition software can offer a

completely new approach to input information into your computer.

Speech recognition programs, although not yet completely exact, have made great

strides in accuracy as well as ease of use. The voice-in or speech recognition approach can

almost fully replace the keyboard and mouse. Speech recognition can now open the computer

world to those who may have been restricted due to a physical handicap. It can also be a

boon for those who have never learned to type

.

2. Output Devices

Output is anything that comes out of a computer. An output device is capable of

presenting information from a computer. There are many output devices attached with the

computers. But the monitors and printers are commonly used output devices.

Monitors

Monitor is a commonly used output device, sometimes called as display screen. It

provides a visual display of data. Monitors are connected with the computer and are similar in

appearance to a television set.

 Initially there were only monochrome monitors. But gradually, we have monitors that

display colour. Monitors display images and text. The smallest dot that can be displayed is

called a pixel (picture element) The resolution of the screen improves as the number of pixels

is increased. Most of the monitors have a 4 : 3 width to height ratio. This is called ‘aspect

ratio’.

The number of pixels that can be displayed vertically and horizontally gives the

resolution of the monitor. The resolution of the monitor determines the quality of the

display. Some popular resolutions are 640 x 480 pixels, 800 x 600 pixels and 1024 x 768

pixels. A resolution of 1024 x 768 pixels will produce sharper image than 640 x 480 pixels.

4

Printers

 Printer is an output device that prints text or images on paper or other media (like

transparencies). By printing you create what is known as a ‘hard copy’. There are different

kinds of printers, which vary in their speed and print quality. The two main types of printers

are impact printers and non-impact printer

Impact printers include all printers that print by striking an ink ribbon. Impact printers

use a print head containing a number of metal pins which strike an inked ribbon placed between

the print head and the paper. Line printers, dotmatrix printers are some of the impact printers.

Characteristics of Impact Printers

Ø In impact printers, there is physical contact with the paper to produce an image.

Ø Due to being robust and low cost, they are useful for bulk printing.

Ø Impact printers are ideal for printing multiple copies (that is, carbon copies)

because they can easily print through many layers of paper.

Ø Due to its striking activity, impact printers are very noisy.

Ø Since they are mechanical in nature, they tend to be slow. Ø Impact printers

do not support transparencies.

Non-impact printers are much quieter than impact printers as their printing heads do

not strike the paper. Non-impact printers include laser printers, inkjet printers and thermal

printers.

Characteristics of Non-Impact Printers

Ø Non-impact printers are faster than impact printers because they have fewer

moving parts.

Ø They are quiet than impact printers because there is no striking mechanism

involved.

Ø They posses the ability to change typefaces automatically. Ø These printers

produce high-quality graphics

Ø These printers usually support the transparencies

Ø These printers cannot print multipart forms because no impact is being made on

the paper.

Line Printer

 Line printers are high-speed printers capable of printing an entire line at a time. A line

printer can print 150 lines to 3000 lines per minute. The limitations of line printer are they can

print only one font, they cannot print graphics, the print quality is low and they are noisy to

operate. But it can print large volume of text data very fast compared to the other printers. It is

also used to print on multipart stationaries to prepare copies of a document.

Dot Matrix Printer

 The most popular serial printer is the dot matrix printer. It prints one line of 8 or 14

5

points at a time, with print head moving across a line. They are similar to typewriters. They are

normally slow. The printing speed is around 300 characters per second. It uses multipart

stationaries to prepare copies of a document.

Thermal Printer

Thermal printers are printers that produce images by pushing electrically heated pins

against special heat-sensitive paper. They are inexpensive and used widely in fax machines

and calculators.

Thermal printer paper tends to darken over time due to exposure to sunlight and

heat. So the printed matters on the paper fade after a week or two. It also produces a poor

quality print.

Laser Printers

Laser printers use a laser beam and dry powdered ink to produce a fine dot matrix

pattern. It can produce very good quality of graphic images. One of the chief characteristics of

laser printers is their resolution – how many dots per inch (dpi) they lay down. The available

resolutions range from 300 dpi at the low end to around1200 dpi at the high end.

Inkjet Printers

Inkjet printers use colour cartridges which combine magenta, yellow and cyan inks to

create colour tones. A black cartridge is also used for crisp monochrome output. Inkjet printers

work by spraying ionizing ink at a sheet of paper. Magnetized plates in the ink’s path direct

the ink onto the paper in the described shape.

INPUT/OUTPUT INTERFACE

Provides a method for transferring information between internal storage (such as
memory and CPU registers) and external I/O devices

• Resolves the differences between the computer and peripheral devices

– Peripherals – Electro-mechanical Devices

– CPU or Memory - Electronic Device

– Data Transfer Rate

» Peripherals - Usually slower

» CPU or Memory - Usually faster than peripherals

• Some kinds of Synchronization mechanism may be needed

– Unit of Information

» Peripherals – Byte, Block, …

» CPU or Memory – Word

– Data representations may differ

6

I/O BUS AND INTERFACE MODULES

Each

peripheral has an interface module associated with it

Interface

- Decodes the device address (device code)

- Decodes the commands (operation)

- Provides signals for the peripheral controller

- Synchronizes the data flow and supervises

the transfer rate between peripheral and CPU or Memory

CONNECTION OF I/O BUS

I/O BUS AND MEMORY BUS

Functions of Buses

* MEMORY BUS is for information transfers between CPU and the MM

* I/O BUS is for information transfers between CPU

and I/O devices through their I/O interface

Physical Organizations

* Many computers use a common single bus system

7

2
4

-N
o

v
-2

0
1

0

for both memory and I/O interface units

- Use one common bus but separate control lines for each function

- Use one common bus with common control lines for both functions

* Some computer systems use two separate buses,

one to communicate with memory and the other with I/O interfaces

I/O Bus

 Communication between CPU and all interface units is via a commonI/O Bus

 An interface connected to a peripheral device may have a number of data registers , a

control register, and a status register

 A command is passed to the peripheral by sending to the appropriate interface

register

 Function code and sense lines are not needed (Transfer of data, control, and status

 information is always via the common I/O Bus)

I/O INTERFACE

ASYNCHRONOUS DATA TRANSFER

 In a computer system, CPU and an I/O interface are designed independently of each

other.

 When internal timing in each unit is independent from the other and when registers in

interface and registers of CPU uses its own private clock.

 In that case the two units are said to be asynchronous to each other. CPU and I/O

device must coordinate for data transfers.

METHODS USED IN A S Y N C H R O N O U S DATA TRANSFER

 Strobe Control: This is one way of transfer i.e. by means of strobe pulse supplied by

one of the units to indicate to the other unit when the transfer has to occur.

 Handshaking: This method is used to accompany each data item being transferred

with a control signal that indicates the presence of data in the bus. The unit receiving the

data item responds with another control signal to acknowledge receipt of the data.

8

2
4

-N
o

v
-2

0
1

0

2
4

-N
o

v
-2

0
1

0

w
w

w
.e

a
z
y
n

o
te

s
.c

o
m

HANDSHAKING

 In case of source initiated data transfer under strobe control method, the source

unit has no way of knowing whether destination unit has received the data or

not.

 Similarly, destination initiated transfer has no method of knowing whether the

source unit has placed the data on the data bus.

 Handshaking mechanism solves this problem by introducing a second control

signal that provides a reply to the unit that initiate the transfer.

 There are two control lines in handshaking technique:

 Source to destination unit

 Destination to source unit

SOURCE INITIATED TRANSFER

 Handshaking signals are used to synchronize the bus activities.

 The two handshaking lines are data valid, which is generated by the source unit,

and data accepted, generated by the destination unit.

 The timing diagram shows exchange of signals between two units.

SOURCE INITIATED TRANSFER USING HANDSHAKING

The sequence of events:

 The source unit initiates the transfer by placing the data on the bus and enabling

its data valid signal.

 The data accepted signals is activated by the

 destination unit after it accepts the data from the bus.

 The source unit then disables its data valid signal, which

 invalidates the data on the bus.

 The destination unit the disables its data accepted signal and the system goes into

http://www.eazynotes.com/

9

w
w

w
.e

a
z
y
n

o
te

s
.c

o
m

2

4
-N

o
v
-2

0
1

0

its initial state.

SOURCE INITIATED TRANSFER USING HAND SHAKING

DESTINATION INITIATED TRANSFER USINGHAND SHAKING

In this case the name of the signal generated by the destination unit is ready for

data.

o The source unit does not place the data on the bus until it receives the ready

for data signal from the destination unit.

o The handshaking procedure follows the same pattern as in source initiated

case. The sequence of events in both the cases is almost same except the ready

for signal has been converted from data accepted in case of source initiated.

http://www.eazynotes.com/

10

ASYNCHRONOUS SERIAL TRANSFER

 Employs special bits which are inserted at both ends of the character code

 Each character consists of three parts; Start bit; Data bits; Stop bits.

 A character can be detected by the receiver from the knowledge of 4 rules;

 When data are not being sent, the line is kept in the 1-state (idle state)

 The initiation of a character transmission is detected by a Start Bit , which is

always a 0

 The character bits always follow the Start Bit

 After the last character , a Stop Bit is detected when the line returns to the 1-state

for at least 1 bit time

The receiver knows in advance the transfer rate of the bits and the number of information

bits to expect

COMMUNICATION INTERFACE

Transmitter Register

- Accepts a data byte(from CPU) through the data bus

- Transferred to a shift register for serial transmission Receiver

 - Receives serial information into another shift register

 - Complete data byte is sent to the receiver register

Status Register Bits

 - Used for I/O flags and for recording errors Control Register Bits

 - Define baud rate, no. of bits in each character, whether to generate and check parity,

11

and no. of stop bits

Block Diagram

Truth table

MODES OF TRANSFER

Programmed I/O

– I/O device does not have direct access to memory

– Requires execution of several instructions by the CPU

INTERRUPT INITIATRED IN I/O

 Interrupt – refers to the transfer of control from a currently running program to another

service

 program as a result of an external/internal generated request

 CPU detects interrupt from a set flag (when a interface is ready to transfer data)

 Upon detection CPU deviates its attention to another program

 Two types namely vectored interrupt and non vectored interrupt are available

12

PRIORITY INTRRUPT

 System that establishes a priority over the various sources to determine which

condition is to be serviced first when two or more requests arrive simultaneously

 Polling – used to identify the highest priority source by software means

 Daisy chaining priority – establishing priority consists of serial connection of all

devices that request an interrupt

 Devices are placed in the order of highest priority first

 VAD – Vector address in the data bus used by the CPU during the device interrupt

cycle.

 Fig: Daisy Chain Priority Interrupt

DIRECT MEMORY ACCESS (DMA)

Transfer of data between a fast storage device and memory is limited by the speed of CPU

 Remove CPU from the path of communication and the technique is DMA

 DMA controller takes over the buses to manage the transfer directly between the I/O

device and memory

 Bus Request (BR) – used by the DMA controller to request the CPU to relinquish

control of the buses

 CPU activates bus grant to inform the external DMA that the buses are in high

impedance state

 Burst transfer – block sequence consisting of memory words is transferred in a

continuous bus when DMA controller is the master

 Cycle Stealing – allows DMA controller to transfer one data word at a time after which

it must return control of the buses to the CPU

Input Output Processor
Processor with DMA capability that communicates with I/O devices

 IOP takes care of input and output tasks relieving the CPU from the housekeeping

chores involved in I/O transfers

13

 IOP can fetch and execute its own instructions

 IOP instructions are specifically designed to facilitate I/O transfers

CPU – IO Processor Communication

SERIAL COMMUNICATION

Data communication processor – communicates with each terminal through a single pair of

wires

 Data and control information are transferred in a serial fashion

 Modems – converts digital signals into audio tones to be transmitted over telephone

lines and also

 converts audio tones from the line to digital signals for machine use

 Transmission modes – Simplex, Half‐duplex, Full‐ duplex

 Data link control protocol – set of rules that are followed by interconnecting computers

and terminals

Auxiliary memory

 Main memory contains data and instructions that are in active use

 Auxiliary storage is for data and programs that aren’t in active use

- Usually disk drives or flash memory

14

Auxiliary Storage vs. Main Memory

Types of Auxiliary Storage

 Auxiliary storage that is always available (like your laptop’s hard disk) is called

online storage

 Removable storage devices (like a CD-ROM or a USB jump drive) are called offline

storage

 Three broad types of auxiliary storage

– Sequential Access (Magnetic Tape)

– Direct Access (Hard Drives / CDs / DVDs)
– Random Access (Jump Drives / Memory Cards)

15

 Sequential Access Storage Devices (SASD)

 Data items are organized in a linear sequence

 Access time is highly variable

o Items near the beginning of the sequence are accessed quickly, but accessing

items near the end may take a long time

 Off-line storage

 Example
o Magnetic tape

DIGITAL NOTES

 SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

MicroComputers

Thetermmicrocomputerisgenerallysynonymouswith personalcomputer,ora

computerthatdependsona microprocessor.

• Microcomputersaredesignedtobeusedbyindividuals,whetherintheformof

PCs,workstationsornotebookcomputers.

• Amicrocomputercontainsa CPUona microchip(themicroprocessor),a memory

system(typicallyROMandRAM),a bussystemandI/Oports,typicallyhoused
ina motherboard

Theinventionofmicroprocessor(singlechipCPU)gavebirth

tothemicrocomputers.Theyareseveraltimescheaperthanminicomputers.

The micro computer classified into 4 categories

1.Workstations

 Workstations are also desktop machines mainly used for intensive graphical

applications. They have more processor speed thanthatofpersonalcomputers.

 Workstationsusesophisticateddisplayscreensfeaturinghigh- resolution colour graphics.

Workstations are used for executing

numericandgraphicintensiveapplicationssuchasComputerAided Design (CAD),

simulation of complex systems and visualizing the resultsofsimulation.

2.PersonalComputers

 Todaythepersonalcomputersarethemostpopularcomputer

systemssimplycalledPCs.Thesedesktopcomputersarealsoknown ashomecomputers.

 Theyareusuallyeasiertouseandmoreaffordable thanworkstations.Theyareself-

containeddesktopcomputersintended

foranindividualuser.Mostoftenusedforwordprocessingandsmall databaseapplications.

3.LaptopComputers

 Laptopcomputersareportablecomputersthatfitinabriefcase. Laptop

computers,alsocallednotebook computers,are wonderfully portable and

functional, and popular with travelers who needacomputerthatcangowiththem.

4.GettingSmallerStill

Fig. 1.23 Personal DigitalAssistants
Pen-based computersuseapenlikestylusandaccept handwritten input directly on a screen.

DIGITAL NOTES

 SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

Pen-based computers are alsocalledPersonalDigitalAssistants(PDA).Specialengineering

and hardware design techniques are adopted to make the portable,

smallerandlightweightcomputers.

BASICCONCEPTSOF MICROPROCESSORS

Microprocessor:Asiliconchipthatcontainsa CPU.Intheworldofpersonal

computers,thetermsmicroprocessorandCPUareusedinterchangeably.

• Amicroprocessorisa digitalelectroniccomponent withminiaturizedtransistorsona

singlesemiconductorintegratedcircuit(IC).

• Oneor moremicroprocessorstypicallyserveasa centralprocessingunit(CPU)in a

computersystemorhandhelddevice.

• Microprocessorsmadepossibletheadventofthemicrocomputer.

• Attheheartofall personalcomputersandmostworkingstationssitsa

microprocessor.

• Microprocessorsalsocontrolthelogicofalmostalldigitaldevices,fromclock

radiostofuel-injectionsystemsforautomobiles.

• Threebasiccharacteristicsdifferentiatemicroprocessors:

• Instructionset:Thesetofinstructionsthatthemicroprocessorcanexecute.

• Bandwidth:Thenumberofbitsprocessedina singleinstruction.

• Clockspeed:Giveninmegahertz(MHz),theclockspeeddetermineshowmany

instructionspersecondtheprocessorcanexecute

 Inbothcases,thehigherthevalue,themorepowerfultheCPU.Forexample,a 32

bitmicroprocessorthatrunsat 50MHzismorepowerfulthana 16-bit

microprocessorthatrunsat 25MHz.

 Inadditiontobandwidthandclockspeed,microprocessorsareclassifiedasbeing

eitherRISC(reducedinstructionsetcomputer)orCISC(complexinstructionset

computer).

 Differencesbetween:

–Microcomputer– acomputerwitha microprocessorasitsCPU. Includesmemory,I/O

etc.

–Microprocessor– siliconchipwhichincludes

ALU, registercircuits&controlcircuits

–Microcontroller– siliconchipwhichincludes

microprocessor,memory&I/O inasingle package.

What is a microprocessor?
Theword comesfromthecombinationmicroand processor.

– Processormeansa devicethatprocesseswhatever.In

thiscontextprocessormeansa devicethatprocesses

numbers,specificallybinarynumbers,0’s and 1’s.

• Toprocessmeanstomanipulate.Itisa generaltermthat

describesallmanipulation.Againinthiscontent,itmeansto

DIGITAL NOTES

 SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

performcertainoperationsonthenumbersthatdependonthe

microprocessor’sdesign.
Definitionofthe Microprocessor

The microprocessorisa programmabledevice that takes innumbers,performsonthem

arithmeticorlogicaloperationsaccordingto the programstoredinmemoryand then

producesother numbersasa result.

Assembly Language

Itisimportantto rememberthatamachine languageanditsassociatedassemblylanguageare

completelymachinedependent.

– Inotherwords, theyarenottransferablefromone microprocessortoa

differentone.

8085MICROPROCESSOR

Thesalientfeaturesof8085µpare:

• Itisa 8bitmicroprocessor.

• ItismanufacturedwithN-MOStechnology.

• Ithas16-bitaddressbusandhencecanaddressupto216=65536bytes(64KB)

memorylocationsthroughA0A15.

• Thefirst8linesofaddressbusand8linesofdatabusaremultiplexedAD0–AD7.

• Databusisa groupof8linesD0–D7.

• Itsupportsexternalinterruptrequest.

• A16bitprogramcounter(PC)

• A16bitstackpointer(SP)

• Six8-bitgeneralpurposeregisterarrangedinpairs:BC,DE,HL.

• Itrequiresa signal+5Vpowersupplyandoperatesat 3.2MHZsinglephase clock.

• Itisenclosedwith40pinsDIP(Dualinlinepackage).

Overviewof8085microprocessor

¾ 8085Architecture

• PinDiagram

• FunctionalBlockDiagram

DIGITAL NOTES

 SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

DIGITAL NOTES

 SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

Signal Groups of 8085

DIGITAL NOTES

 SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

Memory

• Program,dataandstackmemoriesoccupythesamememoryspace.Thetotal

addressablememorysizeis64KB.

• Programmemory- programcanbelocatedanywhereinmemory.Jump,branch andcall

instructionsuse16-bitaddresses,i.e.theycanbeusedtojump/branch

anywherewithin64KB.Alljump/branchinstructionsuseabsoluteaddressing.

• Datamemory-theprocessoralwaysuses16-bitaddressessothatdatacanbe placedanywhere.

• Stackmemoryislimitedonlybythesizeofmemory.Stackgrowsdownward.

• First64bytesina zeromemorypageshouldbereservedforvectorsusedbyRST

instructions.

Interrupts

• Theprocessorhas5interrupts.Theyarepresentedbelowintheorderoftheir

priority(fromlowesttohighest):

•

• INTRismaskable8080Acompatibleinterrupt.Whentheinterruptoccursthe

processorfetchesfromthebusoneinstruction,usuallyoneoftheseinstructions:

• Oneofthe8RSTinstructions(RST0-RST7).Theprocessorsavescurrent

programcounterintostackandbranchestomemorylocationN*8(whereNisa

3-bitnumberfrom0to7 suppliedwiththeRSTinstruction).

• CALLinstruction(3byteinstruction).Theprocessorcalls thesubroutine,address

ofwhichisspecifiedinthesecondandthirdbytesoftheinstruction.

• RST5.5isa maskableinterrupt.Whenthisinterruptisreceivedtheprocessor

savesthecontentsofthePCregisterintostackandbranchesto2CH (hexadecimal)address.

• RST6.5isa maskableinterrupt.Whenthisinterruptisreceivedtheprocessor

savesthecontentsofthePCregisterintostackandbranchesto34H (hexadecimal)address.

• RST7.5isa maskableinterrupt.Whenthisinterruptisreceivedtheprocessor

savesthecontentsofthePCregisterintostackandbranchesto3CH (hexadecimal)address.

• TRAPisa non-maskableinterrupt.Whenthisinterruptisreceivedtheprocessor

savesthecontentsofthePCregisterintostackandbranchesto24H (hexadecimal)address.

• AllmaskableinterruptscanbeenabledordisabledusingEIandDIinstructions.

RST5.5,RST6.5andRST7.5interruptscanbeenabledordisabledindividually

usingSIMinstruction.

ResetSignals

• RESETIN:Whenthissignalgoeslow,theprogramcounter(PC)issettoZero,

µpisresetandresetstheinterruptenableandHLDAflip-flops.

• Thedataandaddressbusesandthecontrollinesare3-statedduringRESETand

DIGITAL NOTES

 SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

becauseofasynchronousnatureofRESET,theprocessorinternalregistersand

flagsmaybealteredbyRESETwithunpredictableresults.

• RESETINisa Schmitt-triggeredinput,allowingconnectiontoanR-Cnetwork forpower-

onRESETdelay.

Uponpower-up,RESETINmustremainlowforat least 10msafterminimum

Vcchasbeenreached.

• Forproperresetoperationafterthepower–upduration,RESETINshouldbe keptlowa

minimumofthreeclockperiods.

• TheCPUisheldintheresetconditionaslongasRESETINisapplied.Typical

Power-onRESETRCvaluesR1=75KΩ,C1=1µF.

• RESETOUT:Thissignalindicatesthatµpisbeingreset.Thissignalcanbeused

toresetotherdevices.Thesignalissynchronizedtotheprocessorclockandlasts

anintegralnumberofclockperiods.

SerialcommunicationSignal

• SID-SerialInputDataLine:Thedataonthislineisloadedintoaccumulatorbit

7whenevera RIMinstructionisexecuted.

• SOD–SerialOutputDataLine:TheSIMinstructionloadsthevalueofbit7of

theaccumulatorintoSODlatchifbit6(SOE)oftheaccumulatoris1.

DMASignals

• HOLD:Indicatesthatanothermasterisrequestingtheuseoftheaddressanddata

buses.TheCPU,uponreceivingtheholdrequest,willrelinquishtheuseofthe

busassoonasthecompletionofthecurrentbustransfer.

• Internalprocessingcancontinue.Theprocessorcanregainthebusonlyafterthe

HOLDisremoved.

• WhentheHOLDisacknowledged,theAddress,DataRD,WRandIO/Mlinesare

3-stated.

• HLDA:HoldAcknowledge:IndicatesthattheCPUhasreceivedtheHOLD

requestandthatit willrelinquishthebusinthenextclockcycle.

• HLDAgoeslowaftertheHoldrequestisremoved.TheCPUtakesthebusone half-

clockcycleafterHLDAgoeslow.

• READY:ThissignalSynchronizesthefastCPUandtheslowmemory, peripherals.

• IfREADYishighduringa readorwritecycle,it indicatesthatthememoryor

peripheralisreadytosendorreceivedata.

• IfREADYislow,theCPUwillwaitanintegralnumberofclockcyclefor

READYtogohighbeforecompletingthereadorwritecycle.

• READYmustconformtospecifiedsetupandholdtimes.

DIGITAL NOTES

 SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

Registers

• AccumulatororAregisterisan8-bitregisterusedforarithmetic,logic,I/Oand

load/storeoperations.

• FlagRegisterhasfive1-bitflags.

• Sign-setifthemostsignificantbit oftheresultisset.

• Zero-setiftheresultiszero.

• Auxiliarycarry-setiftherewasa carryoutfrombit3tobit4oftheresult.

• Parity-setiftheparity(thenumberofsetbitsintheresult)iseven.

• Carry-setiftherewasa carryduringaddition,orborrowduring

subtraction/comparison/rotation.

GeneralRegisters

• 8-bitBand8-bitCregisterscanbeusedasone16-bitBCregisterpair.When usedasa

pairtheCregistercontainslow-orderbyte.Someinstructionsmayuse BCregisterasa datapointer.

• 8-bitDand8-bitEregisterscanbeusedasone16-bitDEregisterpair.When usedasa

pairtheEregistercontainslow-orderbyte.Someinstructionsmayuse DEregisterasa datapointer.

• 8-bitHand8-bitLregisterscanbeusedasone16-bitHLregisterpair.When used asa

pairtheLregistercontainslow-orderbyte.HLregisterusuallycontains a

datapointerusedtoreferencememoryaddresses.

• Stackpointerisa 16bitregister.Thisregisterisalways

decremented/incrementedby2duringpushandpop.

• Programcounterisa 16-bitregister.

InstructionSet

• 8085instructionsetconsistsofthefollowinginstructions:

• Datamovinginstructions.

• Arithmetic-add,subtract,incrementanddecrement.

• Logic-AND,OR,XORandrotate.

• Controltransfer-conditional,unconditional,call subroutine,returnfrom

subroutineandrestarts.

• Input/Outputinstructions.

• Other-setting/clearingflagbits,enabling/disablinginterrupts,stackoperations, etc.

Addressingmode

• Register- referencesthedataina registerorinaregisterpair.

Registerindirect-instructionspecifiesregisterpaircontainingaddress,where

thedataislocated.

Direct,Immediate-8or16-bitdata.

DIGITAL NOTES

 SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

LHLD 16-bit address Theinstructioncopiesthecontentsofthememorylocation

 pointedoutbythe16-bitaddressintoregisterLandcopies

thecontentsofthenextmemorylocationintoregisterH. The

contents of source memory locations are not altered.

Example: LHLD 2040H

8085 INSTRUCTIONSET

1.DATATRANSFERINSTRUCTIONS

Opcode Operand Description

Copy from source to destination

MOV Rd, Rs This instructioncopies the contents of the source

 M, Rs registerinto the destination register;the contents of

 Rd, M thesourceregisterarenotaltered. Ifoneoftheoperandsisa

 memorylocation,itslocationisspecifiedbythecontentsof

the HL registers.

Example: MOVB, C or MOVB, M

Move immediate 8-bit

MVI Rd, data The 8-bit data is stored in the destination registeror

 M, data memory. Iftheoperandisamemorylocation,itslocationis

 specifiedby the contents of the HL registers.

 Example: MVIB, 57H or MVIM, 57H

Load accumulator

LDA 16-bit address The contents of a memory location, specifiedby a

 16-bitaddressintheoperand,arecopiedtotheaccumulator.

The contents of the source are not altered.

Example: LDA 2034H

Load accumulator indirect

LDAX B/D Reg. pair Thecontentsofthedesignatedregisterpairpointtoamemory

 location. Thisinstructioncopiesthecontentsofthatmemory

locationintotheaccumulator. Thecontentsofeitherthe

registerpair or the memory location are not altered.

Example: LDAXB

Load registerpair immediate

LXI Reg. pair, 16-bit data The instructionloads 16-bit data in the register pair

designated in the operand.

Example: LXI H, 2034H or LXI H, XYZ

Load H and L registersdirect

Store accumulator direct

STA 16-bit address Thecontentsoftheaccumulatorarecopiedintothememory

 locationspecifiedbytheoperand. Thisisa3-byteinstruction,

thesecondbytespecifiesthelow-orderaddressandthethird

byte specifiesthe high-orderaddress.

Example: STA 4350H

Store accumulator indirect

STAX Reg. pair Thecontentsoftheaccumulatorarecopiedintothememory

DIGITAL NOTES

 SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

XTHL none ThecontentsoftheLregisterareexchangedwiththestack

 locationpointedoutbythecontentsofthestackpointer

register. ThecontentsoftheHregisterareexchangedwith

thenextstacklocation(SP+1);however,thecontentsofthe

stack pointer registerare not altered.

Example: XTHL

 locationspecifiedbythecontentsoftheoperand(register

pair). The contents of the accumulator are not altered.

Example: STAXB

Store H and L registersdirect

SHLD 16-bit address ThecontentsofregisterLarestoredintothememorylocation

 specifiedbythe16-bitaddressintheoperandandthecontents

ofHregisterarestoredintothenextmemorylocationby

incrementingtheoperand. ThecontentsofregistersHLare

notaltered. Thisisa3-byteinstruction,thesecondbyte

specifiesthelow-orderaddressandthethirdbytespecifiesthe

high-orderaddress.

Example: SHLD2470H

Exchange H and L with D and E

XCHG none ThecontentsofregisterHareexchangedwiththecontentsof

 registerD,andthecontentsofregisterLareexchangedwith

the contents of registerE.

Example: XCHG

Copy H and L registersto the stack pointer

SPHL none TheinstructionloadsthecontentsoftheHandLregistersinto

 the stack pointer register, the contents of the H register

providethehigh-orderaddressandthecontentsoftheL

registerprovidethelow-orderaddress. ThecontentsoftheH

and L registersare not altered.

Example: SPHL

Exchange H and L with top of stack

Push registerpair onto stack

PUSH Reg. pair Thecontentsoftheregisterpairdesignatedintheoperandare

 copiedontothestackinthefollowingsequence. Thestack

pointerregisterisdecrementedandthecontentsofthehigh-

orderregister(B,D,H,A)arecopiedintothatlocation. The

stackpointerregisterisdecrementedagainandthecontentsof

thelow-orderregister(C,E,L,flags)arecopiedtothat

location.

Example: PUSHB or PUSHA

Pop off stack to registerpair

POP Reg. pair Thecontentsofthememorylocationpointedoutbythestack

 pointerregisterarecopiedtothelow-orderregister(C,E,L,

statusflags)oftheoperand. Thestackpointerisincremented

by1andthecontentsofthatmemorylocationarecopiedto

thehigh-orderregister(B,D,H,A)oftheoperand. Thestack

pointer registeris again incremented by 1.

DIGITAL NOTES

 SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

DAD Reg. pair The16-bitcontentsofthespecifiedregisterpairareaddedto

 thecontentsoftheHLregisterandthesumis storedinthe

HLregister. Thecontentsofthesourceregisterpairarenot

altered. Iftheresultislargerthan16bits,theCYflagisset.

No other flags are affected.

Example: DAD H

Example: POPH or POPA

Output data from accumulator to a port with 8-bit address

OUT 8-bit port address ThecontentsoftheaccumulatorarecopiedintotheI/Oport

specifiedby the operand.

Example: OUT F8H

Input data to accumulator from a port with 8-bit address

IN 8-bit port address Thecontentsoftheinputportdesignatedintheoperandare read

and loaded into the accumulator.

Example: IN 8CH

2.ARITHMETICINSTRUCTIONS

Opcode Operand Description

Add registeror memory to accumulator

ADD R The contents of the operand (registeror memory) are

 M addedtothecontentsoftheaccumulatorandtheresultis

 stored in the accumulator. If the operand is a memory

location,itslocationisspecifiedbythecontentsoftheHL

registers. Allflagsaremodifiedtoreflecttheresultofthe

addition.

Example: ADD B or ADD M

Add registerto accumulator with carry

ADC R The contents of the operand (registeror memory) and

 M theCarryflagareaddedtothecontentsoftheaccumulator

 andtheresultisstoredintheaccumulator. Iftheoperandisa

memorylocation,itslocationisspecifiedbythecontentsof

theHLregisters. Allflagsaremodifiedtoreflecttheresultof

the addition.

Example: ADC B or ADC M

Add immediate to accumulator

ADI 8-bit data The8-bitdata(operand)isaddedtothecontentsofthe

 accumulatorandtheresultisstoredintheaccumulator. All

flags are modified to reflectthe result of the addition.

Example: ADI 45H

Add immediate to accumulator with carry

ACI 8-bit data The8-bitdata(operand)andtheCarryflagareaddedtothe

 contentsoftheaccumulatorandtheresultisstoredinthe

accumulator. Allflagsaremodifiedtoreflecttheresultofthe

addition.

Example: ACI 45H

Add registerpair to H and L registers

DIGITAL NOTES

 SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

Subtract registeror memory from accumulator

SUB R The contents of the operand (registeror memory) are

 M subtractedfromthecontentsoftheaccumulator,andtheresult

 isstoredintheaccumulator. Iftheoperandisamemory

location,itslocationisspecifiedbythecontentsoftheHL

registers. Allflagsaremodifiedtoreflecttheresultofthe

subtraction.

Example: SUB B or SUB M

Subtract source and borrowfrom accumulator

SBB R The contents of the operand (registeror memory) and

M the Borrowflag are subtracted from the contents of the

accumulatorandtheresultisplacedintheaccumulator. If the

operand is a memory location, its location is specified by

thecontentsoftheHLregisters. Allflagsaremodifiedto

reflectthe result of the subtraction.

Example: SBB B or SBB M

Subtract immediate from accumulator

SUI 8-bit data The8-bitdata(operand)issubtractedfromthecontentsofthe

 accumulatorandtheresultisstoredintheaccumulator. All

flags are modified to reflectthe result of the subtraction.

Example: SUI 45H

Subtract immediate from accumulator with borrow

SBI 8-bit data The8-bitdata(operand)andtheBorrowflagaresubtracted

 fromthecontentsoftheaccumulatorandtheresultisstored

intheaccumulator. Allflagsaremodifiedtoreflecttheresult

of the subtracion.

Example: SBI 45H

Incrementregisteror memory by 1

INR R The contents of the designated registeror memory) are

 M incrementedby1andtheresultisstoredinthesameplace. If

 theoperandisamemorylocation,itslocationisspecifiedby

the contents of the HL registers.

Example: INR B or INR M

Incrementregisterpair by 1

INX R Thecontentsofthedesignatedregisterpairareincremented by 1

and the result is stored in the same place.

Example: INXH

DIGITAL NOTES

 SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

DAA none The contents of the accumulator are changed from a binary

value to two 4-bit binary coded decimal (BCD) digits. This is

the only instruction that uses the auxiliary flag to perform the

binary to BCD conversion, and the conversion procedure is

described below. S, Z, AC, P, CY flags are altered to reflect

the resultsof the operation.

If the value of the low-order 4-bits in the accumulator is

greater than 9 or if AC flag is set, the instruction adds 6 to the

low-orderfour bits.

If the value of the high-order 4-bits in the accumulator is

greater than 9 or if the Carry flag is set, the instruction adds 6

to the high-orderfour bits.

Example: DAA

Decrementregisteror memory by 1

DCR R The contents of the designated registeror memory are

 M decrementedby1andtheresultisstoredinthesameplace. If

 theoperandisamemorylocation,itslocationisspecifiedby

the contents of the HL registers.

Example: DCR B or DCR M

Decrementregisterpair by 1

DCX R Thecontentsofthedesignatedregisterpairaredecremented by 1

and the result is stored in the same place.

Example: DCX H

Decimal adjust accumulator

ST.JOSEPH COLLEGE OF INFORMATION TECHNOLOGY, SONGEA
DEPARTMENT OF INFORMATION TECHNOLOGY

DIGITAL NOTES
 SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

JC Jump on Carry CY = 1

JNC Jump on no Carry CY = 0

JP Jump on positive S = 0

JM Jump on minus S = 1

JZ Jump on zero Z = 1

JNZ Jump on no zero Z = 0

JPE Jump on parity even P = 1

JPO Jump on parity odd P = 0

3.BRANCHINGINSTRUCTIONS

Opcode Operand Description

Jump unconditionally

JMP 16-bit address Theprogramsequenceistransferredtothememorylocation

specifiedby the 16-bit addressgiven in the operand.

Example: JMP2034H or

JMPXYZ Jump conditionally

Operand: 16-bit address

The program sequence is transferred to the memory

location specified by the 16-bit address given in the

operand based on the specifiedflag of the PSW as

described below.

Example: JZ 2034H or JZ

XYZ Opcode Description Flag Status

Unconditional subroutine call

CALL 16-bit address Theprogramsequenceistransferredtothememorylocation

 specifiedbythe16-bitaddressgivenintheoperand. Before

thetransfer,theaddressofthenextinstructionafterCALL

(the contents of the program counter) is pushed onto the stack.

Example: CALL 2034H or CALL XYZ

Call conditionally

Operand: 16-bit address

Theprogramsequenceistransferredtothememorylocation

specifiedbythe16-bitaddressgivenintheoperandbasedon

thespecifiedflagofthePSWasdescribedbelow. Beforethe

transfer,theaddressofthenextinstructionafterthecall(the

ST.JOSEPH COLLEGE OF INFORMATION TECHNOLOGY, SONGEA
DEPARTMENT OF INFORMATION TECHNOLOGY

DIGITAL NOTES
 SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

contents of the program counter) is pushed onto the

stack. Example: CZ 2034H or CZ XYZ

Opcode Description Flag

Status

CC Call on Carry CY

= 1

CNC Call on no Carry CY

= 0

CP Call on positive S = 0

CM Call on minus S = 1

CZ Call on zero Z

= 1

CNZ Call on no zero

Z = 0

CPE Call on parity even P = 1

CPO Call on parity odd P = 0

Return from subroutine unconditionally

RET none Theprogramsequenceistransferredfromthesubroutineto

 thecallingprogram. Thetwobytesfromthetopofthestack

arecopiedintotheprogramcounter,andprogramexecution

begins at the new address.

Example: RET

Return from subroutine conditionally

Operand: none

The program sequence is transferred from the

subroutine to the calling program based on the specified

flag of the PSW as described below. The two bytes from

the top of the stack are copied into the program counter,

and program execution begins at the new address.

Example

: RZ

Opcode Description Flag

Status

RC Return on Carry CY

ST.JOSEPH COLLEGE OF INFORMATION TECHNOLOGY, SONGEA
DEPARTMENT OF INFORMATION TECHNOLOGY

DIGITAL NOTES
 SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

= 1

RNC Return on no Carry

CY = 0

RP Return on positive S = 0

RM Return on minus S = 1

RZ Return on zero Z

= 1

RNZ Return on no zero

Z = 0

RPE Return on parity even P = 1

RPO Return on parity odd P = 0

Load program counter with HL contents

PCHL none ThecontentsofregistersHandLarecopiedintotheprogram

counter. The contents of H are placed as the high-order

byte and the contents of L as the low-orderbyte.

Example:

PCHL

Restart

RST 0-7 TheRSTinstructionisequivalenttoa1-bytecallinstruction to

one of eight memory locations depending upon the

number. The instructions are generally used in

conjunction with

interruptsandinsertedusingexternalhardware. However

these can be used as software instructions in a program

to transfer program execution to one of the eight

locations. The addressesare:

Instruction Restart Address

RST 0

0000H RST 1

0008H RST 2

0010H RST 3

0018H RST 4

0020H RST 5

0028H RST 6

0030H RST 7

0038H

The 8085 has four additional interrupts and these

interrupts generate RST instructions internally and thus

do not require any external hardware. These instructions

and their Restart addressesare:

Interrupt Restart

ST.JOSEPH COLLEGE OF INFORMATION TECHNOLOGY, SONGEA
DEPARTMENT OF INFORMATION TECHNOLOGY

DIGITAL NOTES
 SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

ANI 8-bit data ThecontentsoftheaccumulatorarelogicallyANDedwiththe

 8-bit data (operand) and the result is placed in the

accumulator. S,Z,Paremodifiedtoreflecttheresultofthe

operation. CY is reset. AC is set.

Example: ANI86H

Address

TRAP

0024H RST 5.5

002CH RST 6.5

0034H RST 7.5

003CH

4.LOGICALINSTRUCTIONS

Opcode Operand Description

Compare registeror memory with accumulator

CMP R The contents of the operand (registeror memory) are

M compared withthe contents of the accumulator. Both

contentsarepreserved.Theresultofthecomparisonis

shown by setting the flags of the PSW as follows:

if (A)< (reg/mem): carry flag

is set if (A)= (reg/mem): zero

flag is set

if (A)> (reg/mem): carry and zero flags are reset

Example: CMP B or CMP M

Compare immediate with accumulator

CPI 8-bit data Thesecondbyte(8-bitdata)iscomparedwiththecontentsof

the accumulator. The values being compared remain

unchanged. The result of the comparison is shown by

setting the flags of the PSW as follows:

if (A)< data: carry flag

is set if (A)= data: zero

flag is set

if (A)> data: carry and zero flags are reset

Example:

CPI 89H

Logical AND registeror memory with accumulator

ANA R The contents of the accumulator are logically ANDedwith

 M thecontentsoftheoperand(registerormemory),andthe

 resultisplacedintheaccumulator. Iftheoperandisa

memorylocation,itsaddressisspecifiedbythecontentsof

HLregisters. S,Z,Paremodifiedtoreflecttheresultofthe

operation. CY is reset. AC is set.

Example: ANA B or ANA M

Logical AND immediate with accumulator

ST.JOSEPH COLLEGE OF INFORMATION TECHNOLOGY, SONGEA
DEPARTMENT OF INFORMATION TECHNOLOGY

DIGITAL NOTES
 SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

Exclusive OR registeror memory with accumulator

Exclusive OR immediate with accumulator

XRI 8-bit data ThecontentsoftheaccumulatorareExclusiveORedwiththe

 8-bit data (operand) and the result is placed in the

accumulator. S,Z,Paremodifiedtoreflecttheresultofthe

operation. CY and AC are reset.

Example: XRI 86H

Logical OR registeror memory with accumulaotr

ORA R The contents of the accumulator are logically ORed with

 M thecontentsoftheoperand(registerormemory),andthe

 resultisplacedintheaccumulator. Iftheoperandisa

memorylocation,itsaddressisspecifiedbythecontentsof

HLregisters. S,Z,Paremodifiedtoreflecttheresultofthe

operation. CY and AC are reset.

Example: ORA B or ORA M

Logical OR immediate with accumulator

ORI 8-bit data ThecontentsoftheaccumulatorarelogicallyORedwiththe

 8-bit data (operand) and the result is placed in the

accumulator. S,Z,Paremodifiedtoreflecttheresultofthe

operation. CY and AC are reset.

Example: ORI 86H

Rotate accumulator left

RLC none Eachbinarybitoftheaccumulatorisrotatedleftbyone

 position. BitD7isplacedinthepositionofD0aswellasin

theCarryflag. CYismodifiedaccordingtobitD7. S,Z,P,

AC are not affected.

XRA R The contents of the accumulator are Exclusive ORed with

 M thecontentsoftheoperand(registerormemory),andthe

 resultisplacedintheaccumulator. Iftheoperandisa

memorylocation,itsaddressisspecifiedbythecontentsof

HLregisters. S,Z,Paremodifiedtoreflecttheresultofthe

operation. CY and AC are reset.

Example: XRA B or XRA M

ST.JOSEPH COLLEGE OF INFORMATION TECHNOLOGY, SONGEA
DEPARTMENT OF INFORMATION TECHNOLOGY

DIGITAL NOTES
 SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

RRC none Eachbinarybitoftheaccumulatorisrotatedrightbyone

 position. BitD0isplacedinthepositionofD7aswellasin

theCarryflag. CYismodifiedaccordingtobitD0. S,Z,P,

AC are not affected.

Example: RRC

Example: RLC

Rotate accumulator right

Rotate accumulator left through carry

Rotate accumulator right through carry

RAR none Eachbinarybitoftheaccumulatorisrotatedrightbyone

 positionthroughtheCarryflag. Bit D0isplacedintheCarry

flag,andtheCarryflagisplacedinthemostsignificant

positionD7. CYismodifiedaccordingtobitD0. S,Z,P,AC

are not affected.

Example: RAR

Complement accumulator

CMA none Thecontentsoftheaccumulatorarecomplemented. Noflags

are affected.

Example:

CMA

Complement carry

CMC none The Carry flag is complemented. No other flags are

affected.

Example:

CMC

Set Carry

STC none The Carry flag is set to 1. No other flags are

affected.

Example:

STC

CONTROLINSTRUCTIONS

RAL none Eachbinarybitoftheaccumulatorisrotatedleftbyone

 positionthroughtheCarryflag. Bit D7isplacedintheCarry

flag,andtheCarryflagisplacedintheleastsignificant

positionD0. CYismodifiedaccordingtobitD7. S,Z,P,AC

are not affected.

Example: RAL

ST.JOSEPH COLLEGE OF INFORMATION TECHNOLOGY, SONGEA
DEPARTMENT OF INFORMATION TECHNOLOGY

DIGITAL NOTES
 SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

EI none Theinterruptenableflip-flopissetandallinterruptsare

 enabled. Noflagsareaffected. Afterasystemresetorthe

acknowledgementofaninterrupt,theinterruptenableflip-

flopisreset,thusdisablingtheinterrupts. Thisinstructionis

necessaryto reenable the interrupts(except TRAP).

Example: EI

Opcode Operand Description

No operation

NOP none Nooperationisperformed. Theinstructionisfetchedand

decoded. Howeverno operation is executed.

Example:

NOP

Halt and enter wait state

HLT none TheCPUfinishesexecutingthecurrentinstructionandhalts

 anyfurtherexecution. Aninterruptorresetisnecessaryto

exit from the halt state.

Example: HLT

Disable interrupts

DI none Theinterruptenableflip-flopisresetandalltheinterrupts

except the TRAP are disabled. No flags are affected.

Exampl

e: DI Enable interrupts

Read interruptmask

RIM none Thisisamultipurposeinstructionusedtoreadthestatusof

 interrupts7.5,6.5,5.5andreadserialdatainputbit. The

instruction loads eight bits in the accumulator with the

following interpretations.

Example: RIM

ST.JOSEPH COLLEGE OF INFORMATION TECHNOLOGY, SONGEA
DEPARTMENT OF INFORMATION TECHNOLOGY

DIGITAL NOTES
 SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

SIM none Thisisamultipurposeinstructionandusedtoimplementthe

 8085interrupts7.5,6.5,5.5,andserialdataoutput. The

instructioninterpretsthe accumulator contents as follows.

Example: SIM

Set interruptmask

DIGITAL NOTES

 SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

ASSEMBLY LANGUAGE

An assembly language is a low-level programming language for a computer, or other programmable

device, in which there is a very strong (generally one-to-one) correspondence between the language

and the architecture's machine code instructions.

WRITING ASSEMBLY LANGUAGE PROGRAMMS

1. Store the data byte 32H into memory location 4000H. MVI A, 52H : Store 32H in

the accumulator

STA 4000H : Copy accumulator contents at address 4000H

HLT : Terminate program execution

Program 2:

LXI H : Load HL with 4000H

MVI M : Store 32H in memory location pointed by HL register pair

HLT : Terminate program execution

2. Exchange the contents of memory locations 2000H and 4000H.

Program 1:

 LDA 2000H : Get the contents of memory location 2000H into accumulator

 MOV B, A : Save the contents into B register

 LDA 4000H : Get the contents of memory location 4000Hinto accumulator

 STA 2000H : Store the contents of accumulator at address 2000H

 MOV A, B : Get the saved contents back into A register

 STA 4000H : Store the contents of accumulator at address 4000H

Program 2:

 LXI H 2000H : Initialize HL register pair as a pointer to memory location 2000H.

 LXI D 4000H : Initialize DE register pair as a pointer to memory location 4000H.

 MOV B, M : Get the contents of memory location 2000H into B register.

DIGITAL NOTES

 SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

LDAX D : Get the contents of memory location 4000H into A register.

MOV M, A : Store the contents of A register into memory location 2000H.

 MOV A, B : Copy the contents of B register into accumulator.

 STAX D : Store the contents of A register into memory location 4000H.

 HLT : Terminate program execution.

3.Find the 2's complement of the number stored at memory location 4200H and store the

complemented number at memory location 4300H.

Source program:

LDA 4200H : Get the number

CMA : Complement the number

ADI, 01 H : Add one in the number

STA 4300H : Store the result

HLT : Terminate program execution

4. Add the contents of memory locations 4000H and 4001H and place the result in memory

location 4002H.

Sample problem

(4000H) = 14H

(4001H) = 89H

Result = 14H + 89H = 9DH

Source program

LXI H 4000H : HL points 4000H

MOV A, M : Get first operand

INX H : HL points 4001H

ADD M : Add second operand

INX H : HL points 4002H

MOV M, A : Store result at 4002H

HLT : Terminate program execution

5. Subtract the contents of memory location 4001H from the memory location 2000H and place the

DIGITAL NOTES

 SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

result in memory location 4002H.

Sample problem:

(4000H) = 51H

(4001H) = 19H

Result = 51H – 19H = 38H

LXI H, 4000H : HL points 4000H

MOV A, M : Get first operand

INX H : HL points 4001H

SUB M : Subtract second operand

INX H : HL points 4002H

MOV M, A : Store result at 4002H.

HLT : Terminate program execution

6. Pack the two unpacked BCD numbers stored in memory locations 4200H and 4201H and store

result in memory location 4300H. Assume the least significant digit is stored at 4200H.

Sample problem:

 (4200H) = 04

 (4201H) = 09

 Result = (4300H) = 94

LDA 4201H : Get the Most significant BCD digit

RLC

RLC

RLC

RLC : Adjust the position of the second digit (09 is changed to 90)

ANI FOH : Make least significant BCD digit zero

MOV C, A : store the partial result

LDA 4200H : Get the lower BCD digit

ADD C : Add lower BCD digit

STA 4300H : Store the result

DIGITAL NOTES

 SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

HLT : Terminate program execution

PROGRAMMING TECHNIQUES: LOOPING. COUNTING, AND INDEXJHG

The examples illustrated in the previous sections are simple and can be solved manually. However, a

computer is at its best, surpassing human capability, when it has to repeat such tasks as adding a large

set of numbers or copying bytes from one block of memory locations to another. It is fast and accurate.

To perform a given repetitive task, commonly used techniques are looping, counting, and indexing. To

add data bytes stored in memory, for example, the following steps are necessary.

I.Looping

In this technique, the program is instructed to execute certain set of instructions repeatedly to

execute a particular task number of times.

A loop is set up by using either a conditional Jump or an unconditional Jump as illustrated in

Examples.

2. Counting.

This technique allows programmer to count how many times the instruction/set of instructions

are executed

The counter is set by loading a count (number of times the task is to be repeated) .into a register

or a register pair, and the counting is done by decrementing the count every time the loop is repeated.

The counter can also be set up to count from 0 to the final count using increment instructions.

3. Indexing.

This technique allows programmer to point or refer the data stored in sequential memory

location one by one.

The starting location of the data can be specified by loading the memory address into a register

pair and using the register pair as a memory pointer or index.

Eg:

DIGITAL NOTES

 SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

Eg:

ADDRESSING MODES

Every instruction of a program has to operate on a data. Themethod of specifying the data to be

operatedby the instruction is called Addressing.

The 8085 has the following 5 different types of addressing.

1. Immediate Addressing

2. Direct Addressing

3. Register Addressing

4. Register Indirect Addressing

5. Implied Addressing

Immediate Addressing

In immediate addressing mode, the data is specified in the instruction itself. The data will be apartof

the program instruction. All instructions that have ‘I’ in their mnemonics are of Immediateaddressing

type.

Eg.MVI B, 3EH- Move the data 3EH given in the instruction to B register.

DIGITAL NOTES

 SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

Direct Addressing

In direct addressing mode, the address of the data is specified in the instruction. The data will be in

memory. In this addressing mode, the program instructions and data can be stored in differentmemory

blocks. This type of addressing can be identified by 16bit address present in theinstruction.

Eg.LDA

1050H-Load the data available in memory location 1050H in accumulator.

Register Addressing

In register addressing mode, the instruction specifies the name of the register in which the data is

available. This type of addressing can be identified by register names (such as ‘A’, ‘B’....) in the

instruction.

Eg. MOV A, B -Move the content of B register to A register.

Register Indirect Addressing

In register indirect addressing mode, the instruction specifies the name of the register in which the

address of the data is available. Here the data will be in memory and the address will be in the register

pair. This type of addressing can be identified by letter ‘M’ present in the instruction.

Eg. MOV A, M - The memory data addressed by HL pair is moved to A register.

Implied Addressing

In implied addressing mode, the instruction itself specifies the type of operation and location of

data to be operated. This type of instruction does not have any address, register name, immediate

data specified along with it.

Eg. CMA - Complement the content of accumulator

DATATRANSFERINSTRUCTIONS

OpcodeOperand Description

Copy from source to destination

MOV Rd, Rs This instructioncopies the contents of the source

 M, Rs registerinto the destination register;the contents of

 Rd, M thesourceregisterarenotaltered. Ifoneoftheoperandsisa

DIGITAL NOTES

 SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

LHLD 16-bit address Theinstructioncopiesthecontentsofthememorylocation

 pointedoutbythe16-bitaddressintoregisterLandcopies

thecontentsofthenextmemorylocationintoregisterH. The

contents of source memory locations are not altered.

Example: LHLD 2040H

 memorylocation,itslocationisspecifiedbythecontentsof

the HL registers.

Example: MOVB, C or MOVB, M

Move immediate 8-bit

MVI Rd, data The 8-bit data is stored in the destination registeror

 M, data memory. Iftheoperandisamemorylocation,itslocationis

 specifiedby the contents of the HL registers.

 Example: MVIB, 57H or MVIM, 57H

Load accumulator

LDA 16-bit address The contents of a memory location, specifiedby a

 16-bitaddressintheoperand,arecopiedtotheaccumulator.

The contents of the source are not altered.

Example: LDA 2034H

Load accumulator indirect

LDAX B/D Reg. pair Thecontentsofthedesignatedregisterpairpointtoamemory

 location. Thisinstructioncopiesthecontentsofthatmemory

locationintotheaccumulator. Thecontentsofeitherthe

registerpair or the memory location are not altered.

Example: LDAXB

Load registerpair immediate

LXI Reg. pair, 16-bit data The instructionloads 16-bit data in the register pair

designated in the operand.

Example: LXI H, 2034H or LXI H, XYZ

Load H and L registersdirect

STA 16-bit address Thecontentsoftheaccumulatorarecopiedintothememory

 locationspecifiedbytheoperand. Thisisa3-byteinstruction,

thesecondbytespecifiesthelow-orderaddressandthethird

byte specifiesthe high-orderaddress.

Example: STA 4350H

STAX Reg. pair Thecontentsoftheaccumulatorarecopiedintothememory

 locationspecifiedbythecontentsoftheoperand(register

pair). The contents of the accumulator are not altered.

Example: STAXB

DIGITAL NOTES

 SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

XTHL none ThecontentsoftheLregisterareexchangedwiththestack

 locationpointedoutbythecontentsofthestackpointer

register. ThecontentsoftheHregisterareexchangedwith

thenextstacklocation(SP+1);however,thecontentsofthe

stack pointer registerare not altered.

Example: XTHL

Store H and L registersdirect

SHLD 16-bit address ThecontentsofregisterLarestoredintothememorylocation

 specifiedbythe16-bitaddressintheoperandandthecontents

ofHregisterarestoredintothenextmemorylocationby

incrementingtheoperand. ThecontentsofregistersHLare

notaltered. Thisisa3-byteinstruction,thesecondbyte

specifiesthelow-orderaddressandthethirdbytespecifiesthe

high-orderaddress.

Example: SHLD2470H

Exchange H and L with D and E

XCHG none ThecontentsofregisterHareexchangedwiththecontentsof

 registerD,andthecontentsofregisterLareexchangedwith

the contents of registerE.

Example: XCHG

Copy H and L registersto the stack pointer

SPHL none TheinstructionloadsthecontentsoftheHandLregistersinto

 the stack pointer register, the contents of the H register

providethehigh-orderaddressandthecontentsoftheL

registerprovidethelow-orderaddress. ThecontentsoftheH

and L registersare not altered.

Example: SPHL

Exchange H and L with top of stack

DIGITAL NOTES

 SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

Push registerpair onto stack

PUSH Reg. pair Thecontentsoftheregisterpairdesignatedintheoperandare

 copiedontothestackinthefollowingsequence. Thestack

pointerregisterisdecrementedandthecontentsofthehigh-

orderregister(B,D,H,A)arecopiedintothatlocation. The

stackpointerregisterisdecrementedagainandthecontentsof

thelow-orderregister(C,E,L,flags)arecopiedtothat

location.

Example: PUSHB or PUSHA

Pop off stack to registerpair

POP Reg. pair Thecontentsofthememorylocationpointedoutbythestack

 pointerregisterarecopiedtothelow-orderregister(C,E,L,

statusflags)oftheoperand. Thestackpointerisincremented

by1andthecontentsofthatmemorylocationarecopiedto

thehigh-orderregister(B,D,H,A)oftheoperand. Thestack

pointer registeris again incremented by 1.

Example: POPH or POPA

Output data from accumulator to a port with 8-bit address

OUT 8-bit port address ThecontentsoftheaccumulatorarecopiedintotheI/Oport

specifiedby the operand.

Example: OUT F8H

Input data to accumulator from a port with 8-bit address

IN 8-bit port address Thecontentsoftheinputportdesignatedintheoperandare read

and loaded into the accumulator.

Example: IN 8CH

ST.JOSEPH COLLEGE OF INFORMATION TECHNOLOGY, SONGEA
DEPARTMENT OF INFORMATION TECHNOLOGY

DIGITAL NOTES

SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

 ARITHMETIC OPERATIONS

1. ADD

2. SUB

3. INR

4. DCR

1.ADD

• A D D - addsasourceoperandtothe destinationoperandofthesamesize.

Fo r m a t :

ADD destination,source

• S o u r ce isunchanged;destinationstoresthesum.Allthestatusflagsareaffected.

• T h e sizesmustmatchandonlyonecanbea memorylocation.

Sample problem

(4000H) = 14H

(4001H) = 89H

Result = 14H + 89H = 9DH

Source program

LXI H 4000H : HL points 4000H

MOV A, M : Get first operand

INX H : HL points 4001H

ADD M : Add second operand

INX H : HL points 4002H

MOV M, A : Store result at 4002H

HLT : Terminate program execution

ST.JOSEPH COLLEGE OF INFORMATION TECHNOLOGY, SONGEA
DEPARTMENT OF INFORMATION TECHNOLOGY

DIGITAL NOTES

SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

SUB

SUB - subtractsasourceoperandfromthedestinationoperandofthesamesize.

• Format :

SUBdestination,source

• Source isunchanged;destinationstoresthe difference.Allthestatusflagsareaffected.

• Thesizesmustmatchandonlyonecanbea memorylocation.Subtract the contents of

memory location 4001H from the memory location 2000H and place theresult in memory

location 4002H.

Sample problem:

(4000H) = 51H

(4001H) = 19H

Result = 51H – 19H = 38H

LXI H, 4000H : HL points 4000H

MOV A, M : Get first operand

INX H : HL points 4001H

SUB M : Subtract second operand

INX H : HL points 4002H

MOV M, A : Store result at 4002H.

HLT : Terminate program execution

INCandDEC

INC – To increase the register address

DEC – To decrease the Register address

INC Reg/Mem

;

;

add1todestination’s

contents
DEC Reg/Mem ;

;

subtract1to

destination’scontents

• Theoperandcanbeeithera registeror memoryoperand.

ST.JOSEPH COLLEGE OF INFORMATION TECHNOLOGY, SONGEA
DEPARTMENT OF INFORMATION TECHNOLOGY

DIGITAL NOTES

SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

• Al l statusflags(exceptCarry)areaffected.

INCandDEC- Examples

• Simple examples

INCal ;increment8-bitregister

DECbx;decrement16-bitregister

INC eax;increment32-bitregister

 INCval1;incrementmemoryoperand

• Anotherexample

.DATA

myWordWORD 1000h

.CODE

INCmyWord ;1001h

MOVbx,myWord

DECbx ;1000h

STACK

Copy H and L registers to the stack pointer

SPHL none The instruction loads the contents of the H and L registers into the stack pointer

register, the contents of the H registerprovide the high-order address and the contents of the L

register provide the low-order address. The contents of the H and L registers are not altered.

Example:

 SPHL Exchange H and L with top of stack

XTHL none Push register pair onto stack

PUSH Reg. pair

ST.JOSEPH COLLEGE OF INFORMATION TECHNOLOGY, SONGEA
DEPARTMENT OF INFORMATION TECHNOLOGY

DIGITAL NOTES

SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

The contents of the L register are exchanged with the stacklocation pointed out by the

contents of the stack pointerregister. The contents of the H register are exchanged withthe next

stack location (SP+1); however, the contents of thestack pointer register are not altered.

Example: XTHL

The contents of the register pair designated in the operand are copied onto the stack in the

following sequence. The stackpointer register is decremented and the contents of the

highorderregister(B,D,H,A) are copied into that location.

The stack pointer register is decremented again and the contents of the low-order

register(C,E,L,flags) are copied to that location.

Example: PUSH B or PUSH A

POP Reg. pair

The contents of the memory location pointed out by the stack pointer register are copied

to the low-order register (C,E, L, status flags) of the operand. The stack pointer is incremented

by 1 and the contents of that memory location are copied to the high-order register (B, D, H, A)

of the operand. The stack pointer register is again incremented by

1. Example: POP H or POP A

SUBROUTINE

A subroutine is a group of instructions that will be used repeatedly in different locations

of the program. Rather the several times, they can be grouped into a subroutine that is called

from different locations.

 The 8085 has two instructions.

1.The CALL instruction is used to redirect program execution to the subroutine

2. The RET instruction is used to return the execution of the calling routine.

ST.JOSEPH COLLEGE OF INFORMATION TECHNOLOGY, SONGEA
DEPARTMENT OF INFORMATION TECHNOLOGY

DIGITAL NOTES

SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

CONDITIONAL CALL AND RETURN INSTRUCTIONS

CALL CONDITIONALLY

Operand: 16-bit address

The program sequence is transferred to the memory location specified by the 16-bit address

given in the operand based onthe specified flag of the PSW as described below. Before

thetransfer, the address of the next instruction after the call (thecontents of the program counter)

is pushed onto the stack.

Example: CZ 2034 or CZ XYZ

Opcode Description

Flag Status

CC Call on Carry CY = 1

CNC Call on no Carry CY = 0

CP Call on positive S = 0

CM Call on minus S = 1

CZ Call on zero Z = 1

CNZ Call on no zero Z = 0

CPE Call on parity even P = 1

RETURN FROM SUBROUTINE UNCONDITIONALLY

RET none The program sequence is CPO Call on parity odd P = 0 transferred from the

subroutine to thecalling program. The two bytes from the top of the stack are copied into the

program counter, andprogram execution begins at the new address.

Example: RET

Return from subroutine conditionally

ST.JOSEPH COLLEGE OF INFORMATION TECHNOLOGY, SONGEA
DEPARTMENT OF INFORMATION TECHNOLOGY

DIGITAL NOTES

SUBJECT CODE: 351CS13 SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

Operand: none

The program sequence is transferred from the subroutine to the calling program based on the

specified flag of the PSW asdescribed below. The two bytes from the top of the stack arecopied

into the program counter, and program executionbegins at the new address.

Example: RZ

Opcode Description Flag Status

RC Return on Carry CY = 1

RNC Return on no Carry CY = 0

RP Return on positive S = 0

RM Return on minus S = 1

RZ Return on zero Z = 1

RNZ Return on no zero Z = 0

RPE Return on parity even P = 1

RPO Return on parity odd P = 0

